Схема принципиальная отопления: видео-инструкция по монтажу своими руками, особенности отопительных систем, цена, фото

Содержание

Принципиальные схемы системы отопления при водяном теплоснабжении

Вода широко используется как теплоноситель в системах отопления, что обусловлено ее преимуществами а также развитием теплофикации, основанной на нагревании воды попутно с выработкой электрической энергии. Водяное отопление применяется почти повсеместно в гражданских зданиях и внедряется в промышленных зданиях.

Практика подтвердила гигиенические и технические достоинства водяного отопления. При водяном отоплении отмечаются относительно невысокая температура поверхности приборов и труб, равномерная температура помещений при качественно-количественном регулировании теплопередачи приборов, значительный срок службы, экономия топлива, бесшумность действия, простота обслуживания и ремонта.

Водяное отопление с искусственным побуждением циркуляции воды при помощи насоса — насосное водяное отопление — получило широкое распространение, а водяное отопление с естественной циркуляцией воды — гравитационное в настоящее время применяется сравнительно редко и при специальном обосновании. Это положение нашло свое отражение в дальнейшем изложении сведений о системах водяного отопления.

Принципиальная схема системы насосного водяного отопления при местном теплоснабжении от водогрейной котельной в отапливаемом здании дается на рисунке.

Охлажденная вода нагревается в котле 2 от температуры t0 до температуры tг. Горячая вода с температурой ti распределяется по стоякам. Движение воды создается циркуляционным насосом 1, включенным в общую обратную магистраль, куда собирается охлажденная вода из всех приборов. Расширительный бак 4 присоединяется к общей обратной магистрали. Первоначальное заполнение и пополнение системы вследствие утечки воды, аварии и ремонта производятся холодной водой из водопровода 5 через обратный клапан.

Принципиальная схема теплопроводов местной водогрейной котельной изображена на рисунке для случая, когда местным теплоснабжением обеспечиваются системы отопления (О), вентиляции и кондиционирования воздуха (В), а также горячего водоснабжения (Г В.) здания. В котле 1 нагревается вода для систем отопления, вентиляции и кондиционирования воздуха по температурному графику качественного регулирования теплопередачи отопительных приборов. В котле 2 вода (первичная) нагревается до постоянной температуры, достаточной для последующего нагревания в теплообменнике 8 водопроводной (вторичной) воды от температуры tx до температуры tг.в. Котел 2 предназначен также для резервирования котла 1 (соединительная задвижка 7 о6ычно закрыта) Охлажденная вода из всех систем собирается в коллекторе 5 и направляется к циркуляционному насосу 3. Циркуляционный насос развивает давление, достаточное для преодоления сопротивления движению воды в циркуляционном кольце любой системы, например в кольце теплоснабжения системы горячего водоснабжения, показанном на рисунке. В это кольцо включены последовательно котел 2, регулирующий клапан 9, теплообменник 8, сборный коллектор 5 и грязевик 10. Расширительный бак 6, общий для всех теплоснабжаемых систем, присоединяется к общей обратной магистрали между сборным коллектором и циркуляционным насосом.

Принципиальные схемы насосных систем водяного отопления при теплоснабжении

а — местном; б, в, г — централизованном водяном; 1 — циркуляционный насос; 2 — котел, 3 — отопительный прибор; 4 — расширительный бак; 5 — водопровод; 6 — подача топлива; 7 — теплообменник; 5 — подпиточный насос; 9 — смесительная установка; 10 и 11 — наружные подающий в обратный теплопроводы.

При централизованном водяном теплоснабжении (от тепловой станции или от ТЭЦ) применяют три основные схемы системы насосного водяного отопления.

Первая из схем системы насосного водяного отопления при централизованном теплоснабжении, называемая независимой, наиболее близка по своим элементам к схеме при местном теплоснабжении. Лишь котел 2 заменяется теплообменником 7 и заполнение системы производится деаэрированной водой при помощи подпиточного насоса 8. В теплообменнике первичная вода из подающего теплопровода 10 нагревает через стенку вторичную — местную воду (не смешиваясь с ней) от температуры t0 до температуры tг, охлаждается от температуры t1 до температуры t2 (естественно, что t2>t0) и удаляется в обратный теплопровод 11.

Независимая схема применяется для создания местного теплогидравлического режима в системе отопления при пониженной температуре греющей воды (tu<t1). Ее преимуществом является также сохранение циркуляции с использованием теплоемкости воды при аварии в наружных теплопроводах. Однако система отопления по этой схеме наиболее сложна и дорога.

Вторая из схем системы насосного водяного отопления при централизованном теплоснабжении, называемая зависимой со смешением воды, применяется в том случае, когда в системе требуется tг<t1 и допускается гидростатическое давление, имеющееся в наружном обратном теплопроводе 11. В этой схеме температура воды t1 в подающем теплопроводе 10 понижается до температуры tт в смесительной установке 9. Местная обратная вода с температурой t0 смешивается с высокотемпературной при помощи смесительного насоса или водоструйного элеватора.

Принципиальная схема теплопроводов местной водогрейной котельной

1 — котел теплоснабжения систем отопления и вентиляции; 2 — котел теплоснабжения системы горячего водоснабжения, 3 — циркуляционный насос; 4 и 5 — распределительный и сборный коллекторы; 6 — расширительный бак, 7 — задвижка (нормально закрыта), 8 — теплообменник системы горячего водоснабжения, 9 — регулирующий клапан; 10 — грязевик.

Преимуществами этой зависимой схемы являются простота конструкции и обслуживания, снижение стоимости системы отопления благодаря устранению таких элементов, как теплообменник, расширительный бак и подпиточный насос, функции которых выполняются централизованно на тепловой станции. При наличии смесительного насоса возможно местное качественно-количественное регулирование, а также сохранение циркуляции воды в системе отопления при прекращении ее в наружных теплопроводах. Недостаток второй схемы — возможность повышения гидростатического давления, непосредственно передающегося через обратный теплопровод в обратную магистраль системы отопления, до величины, опасной для целости отопительных приборов и арматуры.

Третья схема системы насосного водяного отопления при централизованном теплоснабжении также зависимая, но прямоточная, без смешения воды используется в том случае, когда в системе допускаются высокотемпературная вода (tг=t1) и значительное гидростатическое давление. Эта система отопления наиболее простая по конструкции и в обслуживании и, кроме того, наиболее дешевая. Недостатками ее являются отсутствие местного качественного регулирования и зависимость теплового режима от «обезличенного» режима в наружных теплопроводах. Высота здания, в котором может применяться система отопления по третьей схеме, ограничивается необходимостью сохранения в системе достаточного гидростатического давления для предохранения от вскипания высокотемпературной воды.

Местный тепловой пункт для контроля действия и учета расхода тепла в системе отопления по третьей схеме приведен на рисунке.

Расход воды и тепла в системе отопления регулируется клапаном 4 и проверяйся но показаниям термометров 2 и тепломера 7. Грязевик 6 предохраняет тепломер от засорения. Гидростатическое и циркуляционное давление в системе проверяется по показаниям манометров 3 и поддерживается регулятором давления 8 типа «до себя» (т. е. до регулятора, если учитывать направление движения воды), который также запирает воду в системе, как и обратный клапан 5, при опорожнении наружных теплопроводов.

При централизованном водяном теплоснабжении с применением любой из трех схем в системе отопления циркулирует деаэрированная вода (воздух почти целиком удаляется на тепловой станции). Это не только упрощает организацию движения воздушных скоплений для удаления их из системы (фактически только в пусковой период после монтажа и ремонта), но и увеличивает срок службы ее элементов.

Принципиальная схема местного теплового пункта системы отопления tг=t1

1 — задвижка; 2 — термометр; 3 — манометр; 4 — регулятор расхода; 5 — обратный клапан, 6 — грязевик; 7 — тепломер; 8 — регулятор давления.

Общим для всех четырех схем является использование насоса для искусственного побуждения циркуляции воды в системе отопления. Побуждение циркуляции воды поначалу осуществлялось различными средствами, в том числе впуском пара в воду. Однако наиболее рациональным оказалось включение в систему отопления специального циркуляционного насоса.

В первых двух схемах циркуляционный насос 1 включается непосредственно в теплопроводы системы отопления. В двух последних схемах циркуляционный насос размещается на тепловой станции и развивает давление, достаточное для создания циркуляции воды как в наружных теплопроводах,- так и в местной системе отопления.

Для насосной системы водяного отопления характерно многообразие применяемых конструктивных схем, значительный радиус действия, относительно большая скорость движения воды, а также своеобразное соединение ее с расширительным баком, если он имеется.

Большая скорость движения воды позволяет применять теплопроводы с минимальной площадью поперечного сечения (минимального диаметра) и использовать силу течения воды для перемещения и удаления воздушных скоплений из системы в атмосферу. В верхней подающей магистрали, как уже известно, осуществляется попутное движение воды и пузырьков свободного воздуха. В вертикальном однотрубном стояке при нижней разводке магистралей возможны не только унос и абсорбция, но и удаление свободного воздуха в атмосферу в основании стояка.


Похожие материалы:

Новые материалы:

Предыдущие материалы:


Принципиальные схемы, схема отопления, отопление, котельная, схема котельной, топочная, обвязка котельной, обвязка топочной, проект котельной, проект отопления, схема теплоснабжения, обвязка газового котла, обвязка электрического котла, ночной тариф, обвязка твердотопливного котла, схема с твердотопом, схема с тепловым насосом

Галерея принципиальных теплотехнических схем содержит наиболее популярные решения в области обвязки котельных и топочных разных мощностей с применением инновационного оборудования.

          Вариант №1.0 Котел, радиаторы, теплый пол, ГВС.

Система теплоснабжения мощностью максимум до 85 кВт с газовым (электрическим) котлом и отопительными контурами радиаторного отопления реализованного с помощью насосной группы серии UK 1″, и контуром теплых полов через смесительную насосную группу МК 1. Приготовление горячей воды происходи в бойлере косвенного нагрева EBS-PU посредством насосной группы UK 1″. Для гидравлической развязки котла и системы отопления используется гидрострелка Meibes MHK пропускной способностью до 3 куб.м. На подающем трубопроводе установлен сепаратор воздуха Flamcovent для защиты от коррозии и оптимизации работы горелки, на обратном трубопроводе сепаратор шлама Flamcoclean для улавливания микромусора из системы отопления.

   Для автоматизации всей системы используется погодозависимый контроллер отопления HZR-C, который поддерживает температуру в прямом контуре радиаторного отопления в погодозависимом режиме за счет горелки котла (мощности ТЭНа), а контур теплых полов за счет трехходового смесителя насосной группы МК. Автоматика выключает отопительные контура по достижению наружной температуры выше заданной. Гарячая вода поддерживается при заданной температуре и греется в приоритете по отношению к отоплению, для более быстрого нагрева бака ГВС. Контроллер HZR-C позволяет проводить недельное программирование отопительных контуров и нагрев ГВС, для сокращения потребления энергоносителей.

   


 

     Вариант №1.1 Конденсационный котел, радиаторы, теплый пол, ГВС.

 Система теплоснабжения мощностью максимум до 50 кВт с газовым конденсационным котлом и отопительными контурами радиаторного отопления и контуром теплых полов. Обвязка построена на смесительном блоке нового поколения RendeMIX, который позволяет котлу работать в любом режиме с обраткой минимальной температуры и соответственно с максимально возможным КПД, то есть с минимальным потреблением газа.

Идея насосной группы  RendeMIX в включении радиаторного отопления и теплых полов последовательно и как следствие максимальное выхлаждение обратки конденсационного котла, то есть даже при температуре подачи на радиаторы 75 оС обратка на котел будет ниже 45 оС.

Контур радиаторного отопления отсекается трехходовым клапаном по достижению комнатной температуры заданного значения и система продолжает поддерживаться только теплыми полами, то есть экономично и комфортно.

Горячая вода поддерживается при заданной температуре и греется в приоритете по отношению к отоплению, через трехходовой клапан котла (либо внешний клапан при отсутствии такового в котле).

Система работает под управлением погодозависимого контроллера HZR-C, с возможностью недельного программирования отопительных контуров.

   


           Вариант №1.2 Котел, солнечные коллекторы, радиаторы, теплый пол, ГВС.

Котельная идентичная первому варианту, отличие в поддержке нагрева  горячей воды двумя плоскими солнечными коллекторами MFK которые позволяют нагревать до 300 литров горячей воды за один день в бивалентном бойлере ESS-PU . Солнечные коллекторы обеспечивают самостоятельный нагрев горячей воды в межсезонье и летом, система позволяет на 80% ежегодно закрывать нагрев горячей воды за счет энергии солнца, экономя при этом до 500 куб. метров природного газа ежегодно и увеличивая срок службы газового котла, за счет уменьшения часов его работы. Электронный регулятор солнечной насосной станции S 3/4  имеет функцию обратного выхлаждения и защиты солнечных коллекторов от закипания, которые работают по принципу выброса из емкости избытка тепла в ночное время в реверсном режиме, для того что бы иметь возможность принять энергию солнца на следующий день.


       Вариант № 1.3 Тепловой насос, теплосеть, радиаторы, теплый пол.

Котельная с тепловым насосом типа Воздух-Вода который работает на покрытие нагрузки радиаторного отопления и теплых полов. Потребители работают под управлением погодозависимого контроллера HZR-C.

Тепловой насос включен на потребителей через бак аккумулятор с теплообменником, который может работать на прием тепла как от городской сети (рабочее давление 25 бар) так и от системы солнечных коллекторов. Бак аккумулятор может работать как в режиме зима-отопление так и в режиме лето-холод, главной задачей которого является уменьшение тактования воздушного теплового насоса.


       Вариант № 1.4 Теплосеть, Электрокотел — радиаторы, теплый пол.

Теплопункт объекта потребляющий тепловую энергию от городской теплосети (квартира, офис и т.д.) с возможностью догрева автономным электрическим котлом.

Объект отапливается городской теплосетью, включенной к системе отопления через разделительный теплообменник, что повышает безопасность и надежность внутренней системы отопления. При недостатке тепловой мощности автоматика Meibes выключит циркуляционный насос городской сети и запустит электрический котел для дополучения необходимой энергии, аж до момента когда температура теплоносителя в городской сети будет удовлетворять требуемой задаче отопительных контуров.

Система будет управляться в погодозависимом режиме, это означает, что генерироваться тепла будет ровно столько сколько будет требовать система отопления РО и ТП в данный момент.


Вариант № 1.5 Котел газовый, котел электричнеский, радиаторы, теплый пол, ГВС.

Котельная мощностью 35 кВт с газовым настенным котлом как основным теплогенератором и электрическим котлом как резервным/пиковым, отопительными контурами радиаторного отопления насосная группа  UK 1″, и контуром теплых полов смесительная группа МК 1. Для гидравлической развязки котлов и потребителей используется гидравлический разделитель Meibes MHK 25. Для автоматизации всей системы используется погодозависимый контроллер отопления HZR-C и модуль расширения HZR-Е.

       Преимущество данной схеммы в независимой работе радиаторного отопления и теплых полов, то есть возможность определить, что будет доминирующим источником тепла, радиаторное отполения или теплые полы. К примеру автоматика будет выключать радиаторы при температуре на улице 15 оС, а теплые полы будут продолжать работать до температуры на улице 20 оС, что позволит более комфортно и экономично отапливать обьект. Так же автоматика предусматривает автоматическое включение электрического котла при збоях в работе газового котла. При доукомплектации автоматики временным реле MICRO200 будет происходить автоматичекое переключение между  газовым и электрическим котлами по тарифным сеткам, к примеру газовый котел работает с 7-00 до 23-00, а электрический генерирует тепло в дешевом ночном тарифе с 23-00 до 7-00, причем котлы работают в экономичном погодозависимом режиме.



Вариант №1.6 Котел газовый/электричнеский, твердотопливный котел, радиаторы, теплый пол, ГВС.

Система теплоснабжения мощностью до 70 кВт на базе твердотопливного котла как основного источника тепла и газового настенного котла как вспомагательного. Для защиты котла от низкотемпературной коррозии используется насосная группа Meibes с ограничением температуры обратной линии серии MTRE которая защищает твердотопливный котел от разрушения и увеличивает эффективность его работы.

      Для накопления тепловой энергии используется аккумулятор тепла PSX-F, который так же помогает сгладить пики потребления тепла, уменьшить количество загрузок топлива и главное сократить расход топлива, за счет увеличения эффективности его сжигания. Потребления тепла происходит в погодозависимом режиме смесительными насосными группами МК 1 под управлением контроллера HZR-C. Смесительные группы и для радиаторов и для теплого пола используются с целью экономичного потребления тепла из буферной емкости.

Буферная емкость включена в схему по буферно-байпасной схеме через трехходовой клапан ЕМ3, и работает по принципу постоянного отслеживания температуры на обратной линии системы отопления и температуры в буферной емкости. Система питается всегда от буферной емкости если в ней теплоноситель более горячий нежели на обратке системы. При падении в буфере температыры, автоматика отсекает его и включается в работу газовый котел. Данная схема позволяет максимально глубоко охлаждать буфер.

Санитарная горячая вода готовится в бойлере косвенного нагрева EBS-PU от твердотопливного котла и от газового котла во втором приоритете.


          Вариант №1.7 Котел газовый, котел электрический в ночном тарифе, радиаторы, теплый пол, ГВС. 

Котельная на базе настенного газового котла мощностью 35 кВт как основоного источника тепловой энергии работающего на отопление посредством радиаторного отопления и теплых полов. Для отопления в ночное время с 23-00 по 7-00 применяется электрический котел, который дешевой электроэнергией(коефициет 0,5) нагревает буферную емкость за 8 часов двузонного тарифа, и далее система потребляет в дневное время дешовую энергию из буферной емкости. При падении температуры в буфере ниже требуемой сиситеме, включается в работу газовый котел. Система полностью автоматизирована контроллерами Sol Max  и HZR-C.


          Вариант № 1.8 Котел электрический в ночном тарифе, радиаторы, теплый пол, ГВС. 

 Отопление — Электрокотел работает в обход буфера на систему отопления в погодозависимом режиме генерируя ровно столько тепла сколько нужно системе отопления, как только наступает 23-00, автоматика переключает трехходовой и переводит котел в режим максимальной мощность, грея буфер до заданной пользователем максимальной температуры, за счет «дешевой» электрики, накапливая ее на дневное время, период когда действует более высокий тариф, и так включительно до 7-00, когда трехходовой снова переключает электрокотел на байпасирование буфера. Параллельно с этим трехходовой клапан установленный между гидрострелкой и коллектором переходит в режим потребление тепла из буферной емкости, аж вплоть до полного его истощения, то есть падения температуры до значения температуры обратной линии системы отопления.

Отопительные контуры и радиаторов и теплого пола со смесителем, управляемые по погоде, это сделано для того, чтобы экономно отбирать с буферной емкости тепло, причем оба отопительные контуры могут работать по заданной заказчиком недельной программе (например держим в доме 22 днем и 18 ночью).

ГВС — Автоматика держит бойлер ГВС по верхнему температурному датчику при минимальной комфортной температуре, при наступлении 23-00 контроллер перегревает бак санитарной воды до температуры 70-80 оС, что бы саккумулировать санитарную воду на период высокого тарифа.


          Вариант № 1.9 Схема аналогична предыдущей, отличается еще наличием твердотопливного котла, который обеспечивает систему отопления и ГВС энергией в первом приоритете по отношению к электрокотлу. Алгоритм работы аналогичен — твердотопливный котел греет сначала гидрострелку, а избыток мощности сбрасывает в буферную емкость. Далее электрокотел поддерживает комфорнтую температуру на стрелке и с наступлением «дешевого тарифа» выгревает до максимальной температуры буферную емкость.


          Вариант № 1.10 Котельная на базе настенного газового котла  как основоного источника тепловой энергии работающего на отопление двухэтажного дома посредством радиаторного отопления (либо теплых полов). Как аварийный источник тепла используется твердотопливный котел, включенный напрямую в систему отопления через группу стабилизации обратной линии MTR. Приготовление горячей воды осуществляется в бойлере косвенного нагрева EBS-PU, включенным в систему потребления ГВС через рециркуляционный контур, для обеспечения макисмального комфорта. Автоматика управляет всеми циркуляционными насосами по временным каналам и температурам.


          Вариант № 1.11 Принцип работы схемы c твердотопливным котлом и газовым котлом — при отсутствии топлива для твердотопливного котла систему полностью отапливает газовый котел, по мере прогрева буферной емкости и при поднятии температуры в буфере выше нежели температура обратной линии системы отопления, трехходовой клапан ЕМ3-25-12 переходит в режим буфера и система питается сугубо теплом буферной емкости, газовый котел только догревает при необходимости. Гарячая вода греется системой солнечных коллекторов и догревается вторым контуром газового котла, для подстраховки используется ТЭН. Избыток тепловой энергиии солненых коллекторов сбрасывается в буфер и используется для поддержки системы отопления за счет энергии солнечных коллекторов.


          Вариант № 1.12 Вариант включения твердотопливного котла в систему отопления и приготовления горячей воды газовым котлом.

Схема предусматривает управление контуроми радиаторов и теплыми полами в погодозависимом режиме с недельным программированием. Поддержка системы приготовления воды осуществляется солнечными коллекторами.


          Вариант № 1.13 Схема аналогична предудущей, но при данной схеме включения твердотопливного котла в момент запуска котла теплоноситель поступает сразу напрямую на гидравлический разделитель в обход буферной емкости, что гарантирует быстрое отключение газового котла при сжигании твердого топлива. По мере прогрева стрелки теплоноситель частично поступает  в буферную емкость и в итоге при нагреве буфера до требуемой температуры автоматика пускает ток обратного теплоносителя не на гидрострелку, а в буфер отбирая тепло там.


          Вариант № 1.14.Система отопления частного дома включающая 3 источника тепловой энергии — газовый конденсационный котел, твердотопливный котел и система плоских солнечных колекторов FKF 240. Все источники работают на систему радиаторного отопления, отопление теплыми полами, нагрев плавательного басейна и приготовление горячей воды в первом приоритете. Все источники розвязаны посредством гидравлического разделителя, что позволяет экономно потреблять тепловую энергию. Буферная емкость позволяет экономно сжигать твердое топливо, аккумулировать солнечную энергию, далее прционно раздавая ее потребителям. Солнечная система из 5 плоских коллекторов вырабатывает в год около 10 МВт тепловой энергии, что в традиционном топливе замещает 1500 куб.м природного газа, 3000 кг твердого топлива либо 13000 кВтч электрической энергии. Автоматика Майбес управляет полностью всей системой, работой источников тепла и потребителями. Применение погодозависимой автоматики экономит до 40% традиционного топлива.


                  Вариант № 1.15 Система отопления с газовым и электрическим котлами, работающими в режиме день-ночь с сменой приоритетности, работающих на покрытие нагрузки трех отопительных контуров — радиаторное отопление, теплые полы и вентиляции, построенных на насосных группах МК 1″ . Система солнечных коллекторов работает на нагрев бивалентного бака ГВС ESS-PU и плавательного бассейна в втором приориетете. Система предусматривает нагрев бассейна через последовательно включеный теплообменник типа вода-вода, позволяющий делать преднагрев, максимально используя энергию солнца круглогодично. Автоматика определяет какой из потребителей может быть нагрет системой солнечных коллекторов, анализируя температуры на солнечных коллекторах, в баке ГВС и плавательном бассейне. 



     

         Вариант № 1.16 Котельная с четырьмя источниками тепловой энергии по приоритету: солнечные коллекторы, тепловой насос, пеллетный котел, газовый конденсационный котел.

Солнце по мере выполнения задач греет сначала санитарную воду, потом бассейн и только потом работает на поддержку системы отопления.

Тепловой насос включен в слоистый буфер аккумулятор в зоне с низкой температурой для увеличения его СОР. Приоритетность пеллетного котла и теплового насоса есть возможность менять, в зависимости от времени года.

Газовый котел включится в работу только тогда если все остальные источники не выполнять задачу по генерировании энергии.

Отопительные контура построены на смесительных группах, для экономичного теплопотребления энергии с аккумулированной в буферной емкости.


        Вариант № 1.17 Типовая котельная с воздушным тепловым насосом как основным источником энергии и газовым котлом как пиковым теплогенератором.

Воздушный тепловой насос работает в приоритете на нагрев бака косвенного нагрева и на систему отопления через буферную емкость. Бак аккумулятор нужен для того, что бы тепловой насос не тактовал в режимах небольшого теплопотребления, а так же как аккумулятор тепла для системы отопления, когда воздушный тепловой насос переходит в режим приготовления ГВС, в итоге получаем плавную работу на систему отопления без просадки по температуре. Буферная ёмкость подключается и отключается за счет трехходового по принципу буферно-байпасной схемы (большое/ маленькое кольцо). Отопительные контура отбирают тепло качественно за счет трехходовых клапанов под управлением погодозависимой автоматики и дозировано в зависимости от времени суток.

Горячая вода эффективно готовится тепловым насосом в низкотемпературном режиме на нижнем теплообменнике бивалентного бака косвенного нагрева и в случае проседания температуры догревается газовым котлом на верхнем теплообменнике.


    Вариант №1.18 Котельная с воздушным тепловым насосом как основным источником энергии для потребностей тепла и холода.

Воздушный тепловой насос работает через буферную емкость Flamco PS на систему отопления, нагрев бассейна и ГВС и в летнем режиме через буфер холода Flamco PSK на систему фанкойлов и теплых полов. Режим роботы тепло-холод тепловой насос определяет в зависимости от наружной темпенратуры и температуры внутри помещения. При активации режима — холод, гребенка фанкойлов и теплых полов (стен) отсекается трехходовыми клапанами от теплого буфера и подключается буфер холода.

Вспомагательным источником тепловой энергии проектируются солнечные коллекторы, которые позволяют уйти от включения тепловго насоса в летнем режиме на нагрев бассена и бака косвенного нагрева. Схема универсальная, позволяет как пиковый источник тепла включать на мультибуфер — газовый, электрический, твердотопливный котел.


                   Вариант № 1.19 Система отопления и приготовления горячей воды на базе воздушного теплового насоса и электрического котла.

Горячая вода греется в проточной станции 140 кВт с расходом горячей воды 45л/мин, преимущество данной станции — это экономия места топочной, экономное приготовление горячей воды, отсутствие бактерий при простое. Станция предусматривает наличие линии рециркуляции ГВС. Автоматика управляет в погодозависимом режиме системой отопления на базе радиаторов и теплых полов, а также нагревом плавательного бассейна. Автоматика предусматривает роботу теплового насоса Воздух-Вода как основного и электрического как пикового или резервного.

Буфер имеет гладкотрубный теплообменник на который работает самосливная солнечная система типа Drain Back, суть которой в опороженении солнечных коллекторов за счет гравитации в моменты когда нет запроса на нагрев или при отсутствии питания циркуляционного насоса. Как результат теплоноситель никогда не может закипеть и для такой системы не требуется предусматривать аварийный сброс  тепла при его избытке.


          Вариант № 1.20 Схема включения твердотопливного котла в систему отопления с газовым котлом с закрытой камерой сгорания. Принцип работы схемы — при отсутствии потенциала в буферной емкости трехходовой клапан EM3-25-8 отправляет обратку на газовый котел где и происходит его нагрев. При разогреве верхней точке буфера датчик F3 выше температуры обратной линии F7 активируется переключающий клапан и обратка направляется в аккумулятор тепла, где нагревается до температуры F3 и следует в обратную линию котла, далее в котле при необходимости происходит догрев или просто транзитом проходя теплообменник отправляется в систему отопления. Для экономного выноса тепла из буферной емкости необходиммо установить смесительный клапан на выходе из емкости и управлять им с помощью погодозависимого контроллера HZR-C, который так же контролирует горелку газового котла. Данная схема позволяет максимально глубоко выхолаживать буферную емкость, максимально принимая тепло твердотопливного котла.


          Вариант № 1.21 Котельная тепловой мощностью до 70 кВт с стальным газовым котлом, отопительными контурами радиаторного отопления, теплых полов и нагрева бойлера косвенного нагрева. Контроллер HZR-C  управляет всей системой в погодозависимом режиме прямым контуром и смесительным, автоматика так же защищает стальной котел от низкотемпературной коррозии.


        Вариант № 1.22 Комплексная система теплоснабжения с геотермальным тепловым насосом типа грунт-вода, электрическим котлом как вспомагательным или аварийным источником и плоскими солнечными коллекторами для нагрева горячей воды и поддержку системы отопления. Все источники тепловой энергии работают на слоистый накопительный бак-аккумулятор, который позволяет не перемешивать температурные слои полученные от разнотипных теплогенераторов. Верхняя часть буфера это запас энергии для контура ГВС и нижняя часть это теплоноситель контура отопления, для загрузки позонно используется два трехходовых клапана. Для приготовления горячей воды используется проточная станция ГВС LogoFresh, которая экономично и в большом обьеме (до 50 л/мин) готовит санитарную воду. Для покрытия нагрузки по горячей воде используются плоские солненчые коллекторы, которые могут принимать до 30 кВтч тепловой энергии в сутки. Отопительные контура работают в погодозависимом режиме под управление контроллеров eloDrive.


          Вариант № 1.23 Система мультитеплогенерации в которой теплоноситель готовится от твердотопливного котла, теплового насоса до точки бивалентности, газового котла как самого последнего в очереди приоритета и системой солнечных коллекторов работающих на нагрев санитаной гарячей воды и поддержку тепмпературы в плавательном бассейне в летнее время и межсезонье. Отопление обьекта комбинированное радиаторное плюс теплые полы, для поддержания климата в зоне бассейна применяется воздушное отопление.


          

с бойлером, с 2 котлами

Тепловая схема котельной предназначена для графического изображения основного и вспомогательное оборудование, и взаимосвязи  с помощью инженерных сетей. Такие схемы являются обязательными при разработке проектной документации, их выполняют с использованием элементов, утвержденных СНИП.

На схеме отмечают потоки движения теплоносителя по трубам к приборам отопления, котлу, баку и насосу. На линиях указывают расположение регулирующей арматуры и приборов безопасности.

СодержаниеПоказать

Чем отличаются принципиальные и развернутые тепловые схемы

Тепловые схемы теплоснабжения бывают принципиальные, развернутые и монтажные. На принципиальной схеме котельной указывают только основное теплосиловое оборудование: котлоагрегаты, теплообменные аппараты, деаэрационные установки, фильтры химической очистки воды, питательные, подпиточные и дренажные центробежные насосы, а также инженерные сети, которые объединяют все это оборудование без конкретизации числа и месторасположения. На таком графическом документе обозначают расходы и характеристики теплоносителей.

На развернутой тепловой схеме отражается размещенное оборудование, а также трубы, с помощью которых они соединяются, с уточнением расположения запорно-регулирующей арматуры, приборов безопасности.
В случае, когда нанесение на развернутую теплосхему всех узлов невозможно, то такую ее разъединяют на составляющие части по технологическому принципу. Технологическая схема котельной дает развернутую информацию по установленному оборудованию.

Чем отличаются схемы с закрытой и открытой системой

Основным различием открытой или гравитационной системы отопления от закрытой, считается полное отсутствие устройств для принудительного перемещения теплоносителя по трубам. Этот процесс происходит только за счет температурного расширения нагреваемой жидкости.

Состав элементов в тепловой схеме котельной с открытой схемой теплоснабжения:

  • Источник отопления – водогрейный котел, работающий на твердом, жидком и газообразном топливе.
  • Расширительный бак, для термокомпенсации теплоносителя.
  • Переливная труба термокомпенсатора.
  • Подающая (горячая) магистраль со стояками отопления.
  • Отопительные приборы.
  • Обратная магистраль со стояками отопления.
  • Вентиль слива теплоносителя.
  • Вентиль подпитки тепловой сети.

Циркуляция отопления теплоносителя, в закрытой схеме котельной установки, осуществляется благодаря циркуляционному насосу (3), который устанавливается на линии выхода воды из котла (1), как правило, в его верхней части, здесь же размещен воздушник (4). Вода, нагреваясь в котле поступает в подающий трубопровод отопления и направляется к батареям (9) через терморегулирующий кран (8).

На подающей линии устанавливают расширительный бак (7), для температурной компенсации воды при нагреве, предохранительный клапан (6), для сброса аварийного давления в сети и манометр (5) для контроля рабочего давления среды.

На отопительном приборе устанавливаются кран маевского для спуска воздушной пробки (10). По ходу обратного движения теплоносителя установлен трехходовой кран (17), фильтр очистки воды (13), запорный вентиль (15) и дренажный вентиль (14).

Газ к котлу поступает через газовый кран (18) и фильтр (19) для очистки энергоносителя перед форсункой горелочного устройства. Вода для подпитки в схеме водогрейной котельной поступает из водопровода (11) через вентиль (16) на фильтр для очистки от взвешенных веществ и солей жесткости. Котел оборудован линией подачи горячей воды на собственные нужды (2).

Схема котельной при использовании твердого топлива

Твердотопливные котлы имеют определенный недостаток, который вызван высокой инертностью работы, из-за невозможности тонкой регулировки процесса горения твердого топлива.

Для того чтобы сгладить недостаток, в схеме устанавливают буферную емкость, которая набирает температуру для нагрева контура отопления и расходует тепло в течении продолжительного времени.

Такая тепловая схема котельной на твердом топливе состоит:

  • Источник теплоснабжения с первичным контуром нагрева: твердотопливный котел;
  • группа безопасности с предохранительным клапаном;
  • буферная емкость;
  • циркуляционный насос контура отопления;
  • циркуляционный насос котлового контура;
  • расширительный бак;
  • запорная арматура, дренажи, воздушники;
  • балансировочный вентиль;
  • смесительный узел контура отопления, для автоматического поддержания температуры в батареях;
  • смесительный узел котлового контура, для оптимального режима работы котла;
  • погодозависимая или настраиваемая автоматика с сигнализацией аварийного режима.

План с электрокотлом

Электрический котел — агрегат, нагревающий теплоноситель с помощью преобразования электричества в тепловую энергию. Он применяется в качестве источников теплоснабжения для небольших пригородных домов либо, как аварийный источник   с газовым или твердотопливным котлом.

Исходя из модификации таких устройств, используются разнообразные схемы подсоединения электрокотлов к отоплению. Наиболее популярной является многоуровневая система отопления с комбинацией приборов нагрева в виде радиаторов и системы «теплый пол».

Базовые элементы электронагрева частного дома:

  1. Источник отопления, электрокотел.
  2. Группа безопасности, с воздушником, предохранительным клапаном и манометром, для сбрасывания излишнего давления в сети.
  3. Коллектор для направления воды по контурам.
  4. Радиаторы.
  5. Теплообменник для ГВС.
  6. Расширительный бачок, для гидрокомпенсации системы.
  7. Коллектор для системы «теплый пол».
  8. Система теплый пол.
  9. Фильтр  очистки теплоносителя от взвешенных веществ.
  10. Обратный клапан.
  11. Циркуляционный электронасос.
  12. Сети электроснабжения.
  13. Автоматика безопасности с сигнализацией.

Схема с газовым котлом

Газовые котлы являются самыми экономичными и функциональными источниками отопления. В небольшом корпусе, по сути, размещается мини-котельная в частном доме.

Производители современных котлов обустраивают в корпусе все необходимое оборудование в виде насосов, расширительного бака, предохранительно сбросного клапана и воздушника. Собственнику такого оборудования остается только подключить агрегат к контуру отопления и ГВС, что существенно снижает затраты на монтаж.

Но главное преимущество комплексной сборки котла – это согласованность работы всех вспомогательных узлов, которые прошли проверку и наладку в заводских условиях.

Самая простая тепловая схема газовой котельной:

  1. Источник теплоснабжения – газовый котел.
  2. Группа безопасности, с воздушником, предохранительным клапаном, манометром и расширительным баком.
  3. Подача теплоносителя к нагревательным приборам.
  4. Обратка теплоносителя от нагревательных приборов
  5. Радиаторы отопления
  6. Подача водопроводной воды для подпитки тепловой сети с фильтром и запорно-предохранительной арматурой.
  7. Подача водопроводной воды в контур ГВС котла.
  8. Фильтр грубой очистки теплоносителя от взвешенных веществ на линии обратки.
  9. Обратный клапан на линии обратки.
  10. Циркуляционный насос на линии обратки.

Бойлер в схеме котельной

Существуют разнообразные варианты включения бойлера косвенного нагрева к котлоагрегатам, которые могут работать на любом виде топлива: газ, твердое и жидкое топливо.

В этой схеме с бойлером косвенного нагрева не установлена гидрострелка или распределительный коллектор. Монтаж данных элементов связан с определенными сложностями, так как создает очень сложную гидросистему.

В данной схеме используется 2 насоса циркуляции — на отопление и ГВС. Насос для отопления работает постоянно при работе котельной. Циркуляционный насос ГВС, запускается по электросигналу термостата, установленного в баке.

Термостат определяет падение температуры жидкости в баке и передает сигнал на включение насоса, который начинает циркулировать теплоноситель по контуру нагрева между агрегатом и бойлером, нагревая воду до заданной температуры.

Такая схема используется для всех модификаций источников нагрева, устанавливаемых и в водогрейной, и в паровой котельной.

Допускается определенное видоизменение схемы, когда в ней установлен маломощный котел. Электронасос отопления может отключаться тем же термостатом, который включает насос к бойлеру.

В таком варианте теплообменник греется быстрее, а отопление остановлено. При продолжительном простое, температурный режим в комнате будет падать.

Кроме того после завершения прогрева в бойлере, насос в контуре отопления включается в работу и начинает прокачивать в котел холодный теплоноситель, что вызывает образование конденсата на поверхностях нагрева котла и приводит к преждевременному выходу его из строя.

Процесс конденсатообразования также может проявляться в случае длинных трубопроводов, проложенных к батареям. При большом теплосъеме на приборах отопления, теплоноситель аналогично может сильно остыть, низкая температура обратки станет вредить работе котла.

Для защиты его от конденсата и гидравлического удара, возникающего при соприкосновении холодной воды с горячими поверхностями нагрева, в системе предусматривают защитный контур, оборудованный трехходовым клапаном.

На схеме изображена температура 55С. Интегрированный в схему терморегулятор автоматически выбирает требуемую интенсивность движения потока для поддержания температуры теплоносителя на обратке.

Обвязка с гидрострелкой

В сложных многоуровневых системах теплоснабжения для балансировки потоков жидкости на разнообразных участках схемы с индивидуальными циркуляционными электронасосами зачастую применяют гидромеханический распределитель — гидравлическую стрелку либо коллектор.

Подобная схема котельного агрегата предполагает включение бойлера косвенного нагрева через насос НБ и НР, радиаторное отопление через насос НК1 и НК2, теплый пол — через Н1.

Она имеет возможность работать и без наличия гидравлического модуля, в таком случае предусматривают установку балансировочных вентилей, чтобы компенсировать перепады давления в разнообразных «ветках» системы.

Комплектация тепломеханического оборудования:

  1. Источник теплоснабжения – 2.
  2. Группа безопасности, с воздушником, предохранительным клапаном, манометром и расширительным баком.
  3. Подача теплоносителя к нагревательным приборам.
  4. Обратка теплоносителя от нагревательных приборов
  5. Радиаторы отопления.
  6. Система теплый пол.
  7. Бойлер косвенного нагрева
  8. Фильтр грубой очистки котловой воды от взвешенных веществ на линии обратки.
  9. Обратный клапан на линии обратки.
  10. Циркуляционные насосы: по магистральному трубопроводу, в контуре теплого пола и бойлера косвенного нагрева.

Схема котельной с 2 котлами

Применение двух газовых агрегатов для одной системы теплоснабжения является достаточно востребованным решением среди владельцев автономного отопления при тепловой мощности системы выше 50 кВт.

Это может быть и большая обогреваемая площадь объекта, и наличие дополнительных тепловых нагрузок в виде горячей воды или установок с воздушным калориферным обогревом.

Применение двух агрегатов на одну тепловую схему обладает рядом преимуществ по сравнению с одним источником равноценной мощности. Прежде всего, потому, что несколько малогабаритных агрегатов меньшего веса, значительно проще и экономичнее разместить в котельной, что особенно актуально при возведении крышных либо полуподвальных топочных.

Кроме этого, установка 2-х агрегатов значительно увеличивает эксплуатационную надежность системы теплоснабжения. При аварийной остановке одного из агрегата, она будет продолжать функционировать с 50% тепловой нагрузкой.

Такая схема обвязки существенно увеличивает рабочий ресурс котлов, из-за того что они меньше нагружены в отопительный период года.

 

Схема отопления: проектирование системы отопления дома

Схема отопления – это совокупность технических решений, на основе которых строится проект подключения к тепловым сетям или автономным системам, а также прокладка коммуникаций для движения теплоносителя.

Виды схем отопления

Система отопления может быть построена по нескольким схемам с различными типами присоединения оборудования, список которых представлен ниже. Обратите внимание на то, что описание и виды схем представлены как переход от общего случая к частному:

  • Открытые или закрытые системы отопления;
  • С естественной циркуляцией теплоносителя или принудительной;
  • Проект системы с нижней и верхней разводкой;
  • Схема подключения радиаторов отопления к одной или двум магистралям;
  • Прямое или обратное движение теплоносителя в радиаторе.

Отдельно рассматривается пример лучевого подключения к тепловым сетям. Его принципиальная схема присоединения состоит из нескольких независимых контуров, монтаж которых произведен на основе всех перечисленных выше видов построения схемы циркуляции теплоносителя.

Системы закрытые или открытые

Закрытая – это такая система отопления, в которой теплоноситель не контактирует ни с атмосферой, ни с магистралью, проложенной от внешней котельной. Пример такого присоединения – монтаж двухконтурного теплового пункта, оборудованного герметичным мембранным расширительным баком.

Преимущество – закрытый проект присоединения в качестве теплоносителя может использовать незамерзающие жидкости, которые попутно снижают степень активности коррозионных процессов в магистралях, а в случае применения обычной котельной воды – позволяет принять дополнительные меры по ее подготовке (обессоливанию) и очистке.

В открытой системе расширительный бак негерметичный, он устанавливается в самой её верхней точке и обеспечивает естественное распределение давления в зависимости от высоты водяного столба. Также открытая схема используется для прямого присоединения к магистрали поставщика тепловой энергии.

Пример естественной и принудительной циркуляции

В малоэтажном домостроении (максимум до трех этажей) обычно используются системы отопления с естественной циркуляцией, использующие эффект тепловой конвекции – подъем разогретого теплоносителя вверх и опускание вниз остывшего. В закрытых системах с естественной циркуляцией расширительный бак ставят внизу, у котла. Это делается для того, чтобы его упругая мембрана не нарушала баланс давления, уровень которого внизу должен быть больше.

Достоинством системы, в которой теплоноситель движется под действием сил тепловой конвекции, является ее относительная простота – в ней отсутствует насос, который требует дополнительного технического обслуживания. Недостатком присоединения – большая зависимость от технического состояния, ведь при наличии воздуха в магистралях и грязевых отложений в радиаторах циркуляция замедляется.

Пример использования принудительной циркуляции:

  1. Высота отапливаемого дома превышает три этажа;
  2. Источник тепла невозможно опустить максимально низко. Например, при использовании для отопления частного дома газового котла, размещение которого в подполье недопустимо по нормам технической безопасности;
  3. При использовании системы с одной трубой и нижним розливом теплоносителя.

Мощность циркуляционного насоса, используемого в открытой системе, не должна быть очень большой. Иначе, если рабочее давление насоса значительно превышает естественное атмосферное, может произойти выдавливание теплоносителя через переливную магистраль расширительного бака.

Виды разводки: нижняя и верхняя

Теплоноситель из котла может быть подан в отдающую тепло (исполнительную) магистраль системы как сверху, так и снизу. Если разводка верхняя, то горячая вода подается по одному центральному стояку наверх и заполняет расширительный бак (в случае закрытой системы может использоваться герметичный бак-уловитель воздуха со стравливающим клапаном). И уже из бака исполнительная магистраль получает теплоноситель, а от стояков выполняются подключения радиаторов.

Достоинством такой системы является то, что движению теплоносителя помогают естественные факторы – гравитация и тепловая конвекция. Благодаря этому можно использовать циркуляционные насосы небольшой мощности. Проектирование должно учесть и недостатки – необходимость принятия дополнительных мер по утеплению расширительного бака и центрального стояка.

При нижней разводке исполнительная магистраль получает теплоноситель снизу, что экономит тепловую энергию. Но при этом естественной тепловой конвекции препятствует гидродинамическое сопротивление радиаторов, а разливу горячей воды по ним – гравитация. Поэтому проект должен учесть подключения насосов большей мощности для прокачки теплоносителя, особенно когда исполнительная магистраль поднимается на несколько ярусов. Естественная циркуляция теплоносителя при такой схеме построения системы отопления возможна только в одноэтажных домах. Есть и еще одни недостаток, особенно характерный для многоэтажных домов, радиаторы в которых подключены к одной подающей магистрали. В этом случае исполнительная магистраль оканчивается наверху, где скапливается отработанный (остывший) теплоноситель, что противоречит законам термодинамики и как бы переворачивает всю систему с ног на голову.

Подключение к одной или двум магистралям

Монтаж системы, где исполнительная магистраль играет роль подающей (прямая) и сборной (обратка) одновременно, значительно проще, здесь существенно экономятся материалы, легче рассчитать проект. Однако в этом случае радиаторы подключаются к ней последовательно – вход и выход к одной трубе.

При схеме последовательного монтажа первыми начинают прогреваться те радиаторы, которые ближе к выходному патрубку котла. Последние в схеме присоединения теплообменники получают остывший теплоноситель, что уменьшает их КПД.

Также наблюдается неравномерность прогрева радиаторов, что можно устранить лишь с помощью скрупулезных манипуляций по регулировке количества поступающего в них теплоносителя. В многоэтажных домах, исполнительная магистраль которых имеет верхнюю разводку, этот эффект не так заметен по той причине, что движению теплоносителя по стояку помогает гравитация.

Двухтрубная система позволяет подключить радиаторы параллельно друг другу, поскольку их выходные патрубки соединены со сборной магистралью, которая параллельна подающей (прямой). Они прогреваются одновременно, а их регулировка упрощается. Однако дополнительная исполнительная магистраль – это дорогостоящая прокладка через межэтажные перекрытия, сложность работ, эстетический диссонанс в интерьерах помещений, поэтому используется редко.

Совет! Регулировку системы отопления проще производить шаровыми кранами. Установка дроссельных шайб, изменяющих диаметр трубы, не только не обеспечивает точности в этом процессе, но и требует разборки магистралей.

Движение теплоносителя в радиаторе

Если входной и выходной патрубки радиатора расположены на одной стороне, то теплоноситель при движении по нему делает петлю, изменяя направление. Преимуществом такой схемы подключения является более полная теплоотдача. Недостатком – замедление скорости движения горячей воды, в результате чего из нее выделяется (сепарируется) воздушная смесь, и большее гидродинамическое сопротивление системы.

При расположении патрубков на разных сторонах радиатора происходит сквозной пролив теплоносителя через него. Попутная схема подключения имеет как преимущества, так и недостатки. Например, радиатор может не успеть воспринять все тепло, КПД системы снижается. Однако при этом она имеет меньшее гидродинамическое сопротивление, а ее регулировка упрощается.

Совет! Устанавливайте регулировочный кран на выходном патрубке радиатора с прямым движением теплоносителя. Это предотвратит его частичное осушение.

Лучевая разводка

h3_2

В комбинированной схеме системы отопления, где к общей прямой и подающей магистрали производится подключение нескольких независимых друг от друга контуров, обеспечивающих обогрев отдельно взятых квартир или других помещений, используется лучевая разводка. Это позволяет осуществлять индивидуальный учет энергопотребления и его регулирование.

Она основана на использовании коллекторов, откуда производится раздача теплоносителя. Коллекторы комбинированной системы располагаются на межэтажных тепловых пунктах, как и электрические распределительные щиты. Общая магистраль может быть как с верхней, так и нижней разводкой, а общедомовой тепловой пункт – двухконтурным (независимым) или подключенным напрямую к магистрали поставщика тепловой энергии.

Принципиальная схема независимых отопительных контуров строится по тем же принципам, которые описывались выше. Пример монтажа: одно- или двухтрубная система с верхней или нижней разводкой, с попутной или тупиковой циркуляцией теплоносителя в радиаторе. Хозяин квартиры с лучевой разводкой имеет право установить теплообменник и дополнительный квартирный бойлер-подогреватель, если считает, что это ему выгоднее.

Системы отопления: схемы и чертежи — аксонометрическая, принципиальная

Чертежи системы отопления, схемы – все это является важным моментом, когда проходит процесс проектирования системы отопления. Далее следует техническая эксплуатация систем отопления, которая должна быть верной. При построении чертежа можно использовать специальные программы для рисования схем отопления. Однако чтобы чертеж был понятен всем, на него наносятся условные обозначения системы отопления.

Аксонометрическая схема системы отопления

Обозначения

Каждый элемент системы отопления, схемы имеет свой знак маркировки.

  • П – приточные системы, установки систем, вытяжные системы;
  • В – установки систем;
  • У – занавесы воздушного типа;
  • А – отопительные агрегаты;

Это были маркировки, которые касались системы отопления с механическим побуждением.

Для отопительной системы с принудительным побуждением характерны другие условные обозначения на чертежах отопления:

  • Ст – стояк отопительной системы;
  • ГСт – главный стояк отопительной системы;
  • ГВ – ветвь горизонтальная;
  • К – компенсатор.

Чертежи отопления частного дома таких маркировок представлены на рисунке 15.4.1. На плане-схеме установки отопительных систем изображены точками диаметров 1-2 мм.

Разрезы систем отопления и их планы выполняются в масштабах, представленных ниже:

Для вентиляционно-отопительных установок:

  • Схема-размещение, план – 1:400, 1:800;
  • Разрезы и планы – 1:50, 1:100;

Для систем вентиляции и отопительных систем:

  • Разрезы и планы – 1:100, 1:200;
  • Фрагменты разрезов и планов – 1:50, 1:100;
  • Узлы – 1:20, 1:50;
  • Схемы – 1:100, 1:200;

Те же данные, но в изображении детального типа – 1:2, 1:5, 1:10.

Планы и разрезы отопительных систем обычно совмещаются с разрезами и планами систем вентиляции и кондиционирования воздуха.

Техническое обслуживание систем отопления предусматривает, что на разрезах и планах отопительных систем указываются такие показатели, как: разбивочные оси здания и дистанция между ними, отметки главных площадок и чистых полов на этажах, сечения трубопроводов и воздуховодов, количество радиаторных секций, длина и количество труб ребристого типа, и другие детали.

Наименование планов в таком чертеже, как аксонометрическая схема системы отопления, делают по типу «План на отм. 3.000», «План 3 — 7 этажей». Если на разных уровнях, но в пределах одного и того же этажа будут выполнены два или более плана, то их необходимо именовать следующим образом: «План 2—2», «План 3—3».

Чертежи отопления и систем вентиляции выполняются в изометрической фронтальной проекции аксонометрического типа. На схемах элементы отопительных систем будут указаны графическими значениями условного типа.

Если у трубопроводов слишком большая протяженность или у трубопроводов, или у воздуховодов слишком сложное расположение, то изображаться на схеме они будут с разрывами. Пример такой схемы – рисунок 15.4.8.

На схемах компоненты системы отопления представлены в виде графических обозначений. Перед тем, как нарисовать схему отопления, следует учесть, что на отопительных схемах указываются такие компоненты, как трубопроводы, их уклоны и значения диаметра, такие нагревательные компоненты, как стояки и другие.

Пример оформления схем отопительной системы будет представлен на рисунке 15.4.8, а на рисунке 15.4.9 будет представлен пример схемы установок системы теплоснабжения.

Если здание жилого плана, то обычно принципиальная схема отопления выполняется только для его подземной части. Для части здания надземного типа выдается принципиальная схема системы отопления стояков и, если нужно, разводка по чердаку здания.

Принципиальная схема отопления

На рисунках 15.4.2 – 15.4.4 показаны количество секций и размеры диаметра для расчета температуры воздуха для зданий, которые имеют два этажа и более.

Чертеж участка отопления и системы вентиляции

Чертеж системы отопления частного дома и установок для теплоснабжения обычно изображает такие детали, как:

  • аксонометрия системы отопления узлов, помогает управлять отопительной системой и установками для теплоснабжения. Данная схема указана на рисунке 15.4.10.
  • к схеме узла можно указать ту или иную спецификацию. В названии узлов управления может быть представлен номер узла. Узлы схем отопительной системы и схем теплоснабжения установок представлены на рисунке 15.4.11.

На схемах систем кондиционирования и вентиляционных систем указываются такие данные, как:

  • Воздуховоды, значения их диаметров, количество воздуха, который проходит через них и другое;
  • Лючки, которые необходимы, чтобы выявить параметры воздуха и уровень чистки воздуходувов. Также на схемах указываются марки лючков.

Также чертеж системы отопления должен включать все данные, которые нужны во время выполнения различных работ.

Чертеж -схема системы кондиционирования и вентиляции

Если в здании установлены сразу две отопительные системы, то в названии схемы будет указан номер отопительной системы. На рисунках 15.4.14 и 15.4.15 – описание, примеры оформления таких систем как системы вентиляции.

Чертеж основных узлов вентиляции

Исполнительная схема отопления и чертежи, в которых указываются правила установки отопительных систем, представляют собой не только планы установок, но и их разрезы. Эти разрезки выполняются на схеме в упрощенном варианте, без лишних усложняющих деталей. На рисунке 15.4.17 представлена схема с общим видом.

Ремонт квартир, загородных домов, кровля, фундаменты, заборы, ограждения, автономная газификация, частная канализация, отделка фасадов, системы водоснабжения от колодца и скважины, профессиональные современные котельные для частных домов и предприятий.

Системы: отопления, водоснабжения, канализации. Под ключ.

Холдинговая компания СпецСтройАльянс

Прокладка, ремонт и монтаж тепловых сетей, теплотрасс под ключ. Для частных домов и предприятий.

Независимая система отопления, схема, видео

Система отопления в доме – едва ли не самая главная в жизнеобеспечении и достижении необходимой степени комфорта для жильцов. Без приемлемой температуры в доме никто не будет жить или чувствовать себя уютно, поэтому главная задача отопительной системы – обеспечить тепловой комфорт проживающих в доме жильцов. Неважно, подключен ли дом к центральному отоплению или имеет это автономная отопительная система – схемы отопления реализуются как зависимая и независимая. Сегодня независимая система отопления более популярна, но нужно знать, почему, чтобы обеспечить более эффективную и бесперебойную подачу тепла в радиаторы во всех помещениях. Сравним обе этих схемы, чтобы сделать соответствующие выводы. Независимая и зависимая схемы присоединения систем отопления

Зависимая схема отопления в доме

Работа такой схемы присоединения систем отопления к тепловым магистралям реализуется прямо или со станцией смешения, роль которой может выполнять коллектор. При непосредственном подключении теплоносителя к дому горячая жидкость, поступающая из всех труб отопления в доме, перемешивается прямо в котел отопления с теплоносителем, поступающим из обратки. Нужно понимать, что общая температура теплоносителя в этом варианте зависит не только от работы котла, но и от общей протяженности теплосетей, схемы подключения радиаторов и многих других факторов.

Из котла смешанный из труб подачи и обратки теплоноситель снова подается в радиаторы при помощи насосов или водоструйных элеваторов. Чтобы не ограничивать работу котла по температуре (а это особенно важно при большой длине трубопроводов), в теплоноситель добавляют жидкость с более низкой температурой, не позволяя горячей воде на определенных участках достигнуть точки кипения. Оптимальная температура жидкости в случае смешивания горячей и добавленной холодной жидкости – 70-800С. Вода такой температуры и подается в радиаторы квартир и помещений.

Принципиальная схема зависимого отопления с насосом

Непосредственное или прямое подключение применяется в теплосетях с низкой температурой теплоносителя с двухконтурной системой и термостатами, установленными на радиаторах. В этих тепловых сетях значения температуры теплоносителя не меняются целый год. Контрольные приборы в таких теплосетях показывают необходимость потребителей в тепловой энергии, которая зависит от сезона, поэтому подача тепла регулируется автоматически при помощи электронных приборов, регулирующих подачу теплоносителя изменением мощности насосов.

Регулировка зависимой схемы теплоснабжения возможна только количеством горячей и холодной воды, которая будет смешиваться в котле. Циркулировать теплоноситель может как принудительно, так и естественным путем, из-за разницы давлений жидкости на отрезках подключения к узлам внешней отопительной системы. Таем самым определяется легкость в монтаже и обслуживании схемы зависимого подключения отопления с узлом смешения теплоносителя в составе.

Схема центрального отопления с зависимым подключением

Себестоимость зависимой схемы намного ниже независимого подключения из-за неприменения многих узлов, деталей и отдельных конструктивных систем. Зависимое отопление дома будет оптимальным выбором, если система отопления вместе с трубопроводом и отопительными приборами имеет возможность сравнять гидравлическое давление в магистрали до давления теплоносителя на внешнем магистральном трубопроводе.

Плюсы и минусы зависимой схемы подключения отопления

Достоинства:

  1. Монтаж, эксплуатация и обслуживание зависимого отопления быстро окупаются за счет минимального комплекта составляющих и их простого устройства;
Одноконтурная зависимая схема теплоснабжения

Недостатки:

  1. Нельзя организовать регулировку температуры в отдельных помещениях;
  2. Применение в схеме только конкретного комплекта аппаратуры и деталей, которые подходят по техническим параметрам отопительной станции. Это способность выдержать высокое давление в трубах и магистрали, а также возможность переносить гидроудары при пуске системы;
  3. Регулярная очистка магистрали и тепловой аппаратуры от минеральных отложений и наносов, присутствующих в теплоносителе, защита от воздействия кислорода на те же элементы и узлы, чтобы не допустить коррозии металла;
  4. Высокое энергопотребление оборудования.

Независимое присоединение отопления

При монтаже отопительной системы по независимой схеме подключение узлов и элементов тепловой магистрали делается таким образом, чтобы теплоноситель в котле отопления сначала нагрелся до 1300С-1500С, а затем, пройдя через теплообменники, направился к магистрали с основным потоком теплоносителя. Основной поток нагретой жидкости циркулирует в замкнутом отопительном контуре, и с добавляемым потоком нагретой жидкости не смешивается.

Независимая схема подключения отопления

В тепловой станции устанавливается циркуляционный насос, который обеспечивает необходимое давление в магистрали. Энергосберегающая независимая схема отопления использует автоматические регуляторы температуры, насосы с регулировкой скорости вращения ротора, контрольные расходомеры тепла. Надежность независимая схема присоединения системы отопления обеспечивает себе использованием оригинального проекта для каждой схемы отопления, замкнутым циклом оборота теплоносителя с функцией переключения любого из потребителей на другие источники подачи тепла при аварии или ремонте. При таком устройстве теплосети крайне сложно вывести из строя всю магистраль.

Применяется независимое присоединение при недопустимости превышения критических значений гидравлического давления в магистрали по условиям прочности системных элементов и узлов. Главное условие надежной и бесперебойной работы схемы – давление теплоносителя во внешней тепловой магистрали должно быть больше давления в магистрали внутренней. При выполнении этого условия независимое отопление является наиболее надежной схемой. Независимое отопление частного дома

Также независимое подключение позволяет поддерживать циркуляцию нагретого теплоносителя в случае аварий или ремонтных работ в течение времени, достаточного для устранения причин поломки или проведения профилактических работ. То есть, потребители в любом случае не останутся без тепла в доме. Гидравлическое давление в трубах теплосети при независимом присоединении поддерживается отдельно от наружных конструкций отопительной системы.

В открытых тепловых системах независимая схема подключения используется для повышения качества теплоносителя, поступающего из котлов. Сама схема подключения организована таким образом, что горячий теплоноситель не перетекает сразу по радиаторам или батареям отопления, а попадает в отстойники.

Плюсы и минусы независимой схемы подключения отопления

Достоинства:

  1. Глубокая регулировка температуры во всех отапливаемых помещениях возможна благодаря изолированности теплоносителя от котла системы отопления и постоянной поддержке требуемого давления в теплоцентрали;
  2. Химический состав теплоносителя можно изменять по своему усмотрению;
  3. Энергосбережение благодаря независимой схеме достигает 40%;
  4. Теплоотдача радиаторов будет максимально эффективной даже при значительном удалении отапливаемых помещений друг от друга, от тепловой станции, при большой протяженности тепловой магистрали или при разбросе точек приема тепла;
  5. Надежность;
  6. Улучшение качества теплоносителя и, как следствие, качества ГВС.
Оборудование для обеспечения отопления по независимой схеме

Недостатки:

  1. Большие расходы на монтаж и обслуживание отопительных приборов и систем;
  2. Трудозатратный и дорогой ремонт.

Закрытые системы по любой схеме имеют одну особенность: в них котлы ГВС подключаются к теплоцентрали реализацией трех вариантов. Это параллельное, последовательное и смешанное подключение. Чтобы выбрать подходящий и оптимальный вариант, необходимо учитывать соотношение нагрузки для отопительной системы дома, и нагрузки на ГВС. Соотношение рассчитывается согласно графику температур при централизованном регулировании отдачи тепла в магистраль, который принят при расчете тепла по показаниям абонентских тепловых счетчиков.

Отопительный температурный график для систем отопления

В современных системах отопления зависимое подключение практически не используется из-за неэффективности и затратности содержания, поэтому независимое подключение отопления становится актуальным и лидирующим, несмотря на высокие первоначальные затраты при монтаже и пуско-наладке. При переходе на независимую схему изредка используется комбинированная схема подключения индивидуального теплового пункта (ИТП), в которой работают и зависимая, и независимая схемы присоединения отопления.

Энергонезависимость и выбор схемы отопления

Отопительные системы делятся на энергозависимые и энергонезависимые. При подключении электричества к системе отопления появляется больше возможностей в регулировке, контроле и усилении эффекта теплоотдачи магистрали и радиаторов. Для сравнения самых простых функций разных вариантов котлов ниже приведены два наиболее распространенных требования:

  1. Энергонезависимые газовые приборы используют ручной розжиг подручными средствами или при помощи пьезоэлемента. Пламя в горелке регулируется механическим термоэлементом. При превышении заданного значения температуры главная горелка прекращает работу, но работает поддерживающий фитиль;
  2. В энергозависимых котлах после отключения электричества газ перекрывается. Основная горелка разжигается электрическим импульсом, которого может и не быть в аварийных ситуациях. Также подключение к электросети необходимо для включения вентилятора наддува.
Твердотопливный котел в независимом подключении отопления

В местности с частыми аварийными ситуациями и отключением с электроэнергии лучше пользоваться энергонезависимым газовым или твердотопливным котлом, чтобы обеспечить постоянную подачу тепла в систему отопления дома.

Важно: Хотя и сегодня отопление по зависимой схеме присоединения организовать не составит труда, нужно помнить, что это – самая неэффективная схема, которая потребует не только единовременных затрат, но и постоянного ухода за оборудованием и контроля за параметрами системы.

Газовый котел в независимом подключении отопления

Недостаток этого решения очевиден: такие котлы работают постоянно, поэтому они неэкономичны. А в случае с газовым котлом поддержание пламени в фитиле забирает до 20% всего газового объема, затрачиваемого на отопление.

Еще один минус такой схемы с газовым котлом – это оборудование без подключения к электросети не может контролировать температуру на улице с целью управления нагревом теплоносителя в зависимости от показаний наружного термостата. Поэтому организовать раздельное управление, длительно программирование и регулировку температуры в отдельно взятых помещениях не получится.

принципиальная схема системы теплоузла, элеватор теплового узла, устройство

Содержание:

Обеспечить в квартирах многоэтажных домов оптимальную температуру в зимнее время можно только путем подачи в радиаторы горячего теплоносителя. Нагрев воды до рабочих показателей осуществляется с помощью специального теплового узла – элеватора, установленного в подвальном помещении дома или в котельной. О том, что это за приспособление и как оно функционирует, расскажем далее в статье.

Как работает элеваторный узел

Прежде чем разбираться с устройством элеваторного узла, отметим, что данный механизм предназначен для соединения конечных потребителей тепла с тепловыми сетями. По конструкции тепловой элеваторный узел представляет собой своего рода насос, который входит в систему отопления наряду с запорными элементами и измерителями давления.

Элеваторный узел отопления выполняет несколько функций. В первую очередь, он перераспределяет давление внутри системы отопления, чтобы вода конечным потребителям в радиаторы поставлялась с заданной температурой. При прохождении по трубопроводам от котельной до квартир, количество теплоносителя в контуре возрастает практически вдвое. Это возможно только, если есть запас воды в отдельном герметичном сосуде.


Как правило, из котельной подается теплоноситель, температура которого достигает 105-150 ℃. Такие высокие показатели недопустимы для бытовых целей с точки зрения безопасности. Максимальная температура воды в контуре согласно нормативным документам не может превышать 95 ℃.

Примечательно, что в СанПин в настоящее время установлен норматив температуры теплоносителя в пределах 60 ℃. Однако с целью экономии ресурсов активно обсуждают предложение снизить этот норматив до 50 ℃. Согласно экспертному заключению разница не будет ощутима для потребителя, а в целях дезинфекции теплоносителя ее каждые сутки нужно будет прогревать до 70 ℃. Тем не менее, данные изменения в СанПин еще не приняты, поскольку нет однозначного мнения насчет рациональности и эффективности такого решения.


Схема элеваторного узла отопления позволяет привести температуру теплоносителя в системе до нормативных показателей.

Этот узел позволяет избежать следующих последствий:

  • слишком горячие батареи при неосторожном обращении могут привести к ожогам кожных покровов;
  • не все отопительные трубы рассчитаны на длительное воздействие высокой температуры под давлением – такие экстремальные условия могут привести к преждевременному их выходу из строя;
  • если разводка выполнена из металлопластиковых или полипропиленовых труб, она не рассчитана на циркуляцию горячего теплоносителя.

Преимущества элеватора

Некоторые пользователи утверждают, что схема элеватора является нерациональный, и намного проще было бы подавать потребителям теплоноситель меньшей температуры. В действительности же такой подход предусматривает увеличение диаметра магистральных трубопроводов для подачи более холодной воды, что приводит к дополнительным расходам.


Выходит, что качественная схема теплового отопительного узла дает возможность смешивать с подающим объемом воды долю воды из обратки, которая уже успела остыть. Несмотря на то, что отдельные источники элеваторных узлов отопительных систем относятся к старым гидравлическим агрегатам, по факту они являются эффективными в работе. Имеются и более новые агрегаты, пришедшие на замену схем элеваторного узла. Такая схема теплоснабжения многоквартирного дома более эффективна и экономична.

К ним относятся следующие типы оборудования:

  • теплообменник пластинчатого типа;
  • смеситель, оснащенный трехходовым клапаном.

Как работает элеватор

Изучая схему элеваторного узла системы отопления, а именно то, что он собой представляет и как функционирует, нельзя не отметить схожесть готовой конструкции с водяными насосами. При этом для работы не требуется получение энергии из иных систем, а надежность можно будет наблюдать в конкретных ситуациях.

Основная часть приспособления с внешней стороны похожа на гидравлический тройник, установленный на обратке. Через простой тройник теплоноситель спокойно попадал бы в обратку, минуя радиаторы. Такая схема теплоузла была бы нецелесообразной.


В обычной схеме элеваторного узла отопительной системы имеются такие детали:

  • Предварительная камера и подающая труба с установленным на конце соплом определенного сечения. Через нее подается теплоноситель из обратной ветки.
  • На выходе встроен диффузор. Он предназначен для передачи воды к потребителям.

На данный момент можно встретить узлы, где сечение сопла корректируется электроприводом. Благодаря этому можно автоматически подстраивать приемлемую температуру теплоносителя.

Подбор схемы узла отопления с электроприводом делается исходя из того, чтобы можно было изменять коэффициент смешения теплоносителя в пределах 2-5 единиц. Этого нельзя будет добиться в элеваторах, в которых сечении сопла нельзя изменять. Получается, что системы с регулируемым соплом дают возможность в значительной степени сократить средства на отопление, что очень актуально в домах с центральными счетчиками.

Принцип работы схемы теплового узла

Рассмотрим принципиальную схему элеваторного узла – то есть схему его работы:

  • горячий теплоноситель подается из котельной по магистральному трубопроводу к входу в сопло;
  • перемещаясь по трубам небольшого сечения, вода постепенно набирает скорость;
  • при этом образуется несколько разряженная область;
  • образовавшийся вакуум начинает подсос воды из обратки;
  • однородные турбулентные потоки сквозь диффузор поступают к выходу.


Если в системе отопления применяется схема теплового узла многоквартирного дома, то ее эффективную работу можно обеспечить только при условии, что рабочее давление между подающим и обратным потоками будет больше расчетного гидросопротивления. 

Немного о недостатках

Несмотря на то, что тепловой узел имеет много преимуществ, есть у него и один существенный недостаток. Дело в том, то элеватором невозможно регулировать температуру выходящего теплоносителя. Если измерение температуры воды в обратном трубопроводе показывает, что она слишком горячая, необходимо будет ее понизить. Осуществить такую задачу можно только путем уменьшения диаметра сопла, однако, это не всегда возможно ввиду конструкционных особенностей.

Иногда тепловой узел оборудуют электроприводом, с помощью которого удается подкорректировать диаметр сопла. Он приводит в движение основную деталь конструкции – дроссельную иголку в виде конуса. Эта игла перемещается на заданное расстояние в отверстие по внутреннему сечению сопла. Глубина перемещения позволяет изменять диаметр сопла и тем самым контролировать температуру теплоносителя.


На валу может быть установлен как привод ручного типа в виде рукоятки, так и электрический дистанционно управляемый двигатель.

Стоит отметить, что установка такого своеобразного регулятора температуры позволяет модернизировать общую систему отопления с тепловым узлом без существенных финансовых вливаний.

Вероятные неполадки

Как правило, большинство неполадок в элеваторном узле возникает по следующим причинам:

  • образование засора в оборудовании;
  • изменения в диаметре сопла в результате эксплуатации оборудования – увеличение сечения усложняет регулировку температуры;
  • засоры в грязевиках;
  • выход из строя запорной арматуры;
  • поломки регуляторов.

В большинстве случаев выяснить причину неполадок достаточно просто, поскольку они сразу отражаются на температуре воды в контуре. Если перепады и отклонения температуры от нормативов незначительны, что, вероятно, имеет место зазор или же сечение сопла несколько увеличилось.


Перепад в температурных показателях более 5 ℃ свидетельствует о наличии проблемы, решить которые могут только специалисты после проведения диагностики.

Если в результате окисления от постоянного контакта с водой или непроизвольного сверления возрастает сечение сопла, нарушается балансировка всей системы. Такой изъян нужно как можно быстрее исправить.

Стоит отметить, что в целях экономии финансов и использования отопления более эффективно, на тепловых узлах могут устанавливать электросчетчики. А приборы учета горячей воды и тепла дают возможность дополнительно снизить расходы на коммунальные платежи.

Принципиальная схема

, работа и применение

Принцип индукционного нагрева используется в производственных процессах с 1920-х годов. Как уже было сказано, необходимость — мать изобретений, во время Второй мировой войны необходимость в быстром процессе упрочнения деталей металлического двигателя привела к быстрому развитию технологии индукционного нагрева. Сегодня мы видим применение этой технологии в наших повседневных потребностях. В последнее время потребность в улучшенном контроле качества и безопасных производственных технологиях снова привлекла внимание к этой технологии.С помощью современных передовых технологий внедряются новые и надежные методы реализации индукционного нагрева.

Что такое индукционный нагрев?

Принцип работы процесса индукционного нагрева представляет собой комбинированный рецепт электромагнитной индукции и джоулева нагрева. Процесс индукционного нагрева — это бесконтактный процесс нагрева электропроводящего металла путем создания в нем вихревых токов с использованием принципа электромагнитной индукции. Поскольку генерируемый вихревой ток течет против удельного сопротивления металла, по принципу джоулева нагрева в металле генерируется тепло.


Индукционный нагрев

Как работает индукционный нагрев?

Знание закона Фарадея очень полезно для понимания работы индукционного нагрева. Согласно закону электромагнитной индукции Фарадея, изменение электрического поля в проводнике приводит к возникновению переменного магнитного поля вокруг него, сила которого зависит от величины приложенного электрического поля. Этот принцип работает и наоборот, когда в проводнике изменяется магнитное поле.

Итак, вышеуказанный принцип используется в процессе индукционного нагрева.Здесь твердотельный источник питания с высокочастотной частотой подается на катушку индуктивности, а нагреваемый материал помещается внутри катушки. Когда через катушку пропускают переменный ток, вокруг нее создается переменное магнитное поле в соответствии с законом Фарадея. Когда материал, помещенный внутри индуктора, попадает в диапазон этого переменного магнитного поля, в материале генерируется вихревой ток.

Теперь соблюдается принцип джоулева нагрева. В соответствии с этим при прохождении тока через материал в нем выделяется тепло.Таким образом, когда в материале генерируется ток из-за индуцированного магнитного поля, протекающий ток выделяет тепло изнутри материала. Этим объясняется процесс бесконтактного индукционного нагрева.

Индуктивный нагрев металла

Схема цепи индукционного нагрева

Установка, используемая для процесса индукционного нагрева, состоит из высокочастотного источника питания для подачи переменного тока в цепь. Медная катушка используется в качестве индуктора, и к ней подается ток. Нагреваемый материал помещается внутрь медного змеевика.


Типовая установка для индукционного нагрева

Изменяя силу подаваемого тока, мы можем контролировать температуру нагрева. Поскольку вихревой ток, возникающий внутри материала, течет противоположно удельному электрическому сопротивлению материала, в этом процессе наблюдается точный и локализованный нагрев.

Помимо вихревых токов, в магнитных частях также выделяется тепло из-за гистерезиса. Электрическое сопротивление, создаваемое магнитным материалом по отношению к изменяющемуся магнитному полю внутри индуктора, вызывает внутреннее трение.Это внутреннее трение создает тепло.

Поскольку процесс индукционного нагрева является процессом бесконтактного нагрева, нагреваемый материал может находиться вдали от источника питания или погружен в жидкость, или в любую газообразную среду, или в вакуум. Для этого типа нагрева не требуются дымовые газы.

Факторы, которые необходимо учитывать при проектировании системы индукционного нагрева

Есть некоторые факторы, которые следует учитывать при проектировании системы индукционного нагрева для любого типа применения.

  • Обычно индукционный нагрев используется для металлов и токопроводящих материалов. Непроводящий материал можно нагревать напрямую.
  • При нанесении на магнитные материалы тепло генерируется как вихревыми токами, так и эффектом гистерезиса магнитных материалов.
  • Маленькие и тонкие материалы нагреваются быстрее по сравнению с большими и толстыми материалами.
  • Чем выше частота переменного тока, тем меньше глубина проплавления.
  • Материалы с более высоким сопротивлением быстро нагреваются.
  • Индуктор, в который помещается нагревательный материал, должен позволять легко вставлять и удалять материал.
  • При расчете мощности источника питания необходимо учитывать удельную теплоемкость нагреваемого материала, массу материала и требуемое превышение температуры.
  • Потери тепла из-за теплопроводности, конвекции и излучения также следует принимать во внимание при выборе мощности источника питания.

Формула для индукционного нагрева

Глубина, на которую проникает вихревой ток в материал, определяется частотой индукционного тока.Для токоведущих слоев эффективная глубина может быть рассчитана как

D = 5000 √ρ / µf

Здесь d означает глубину (см), относительная магнитная проницаемость материала обозначена как µ, ρ — удельное сопротивление. материала в Ом-см, f указывает частоту переменного тока в Гц.

Конструкция змеевика индукционного нагрева

Катушка, используемая в качестве индуктора, к которому подается питание, бывает различных форм.Индуцированный ток в материале пропорционален количеству витков в катушке. Таким образом, для эффективности и действенности индукционного нагрева важна конструкция катушки.

Обычно индукционные катушки представляют собой медные проводники с водяным охлаждением. В зависимости от наших приложений используются катушки различной формы. Чаще всего используется многооборотная спиральная катушка. Для этой катушки ширина диаграммы нагрева определяется количеством витков в катушке. Однооборотные катушки полезны в тех случаях, когда требуется нагрев узкой полосы заготовки или кончика материала.

Многопозиционный спиральный змеевик используется для нагрева нескольких деталей. Блинный змеевик используется, когда требуется нагреть только одну сторону материала. Внутренний змеевик используется для нагрева внутренних отверстий.

Области применения индукционного нагрева

  • Целенаправленный нагрев для поверхностного нагрева, плавления, пайки возможен с помощью процесса индукционного нагрева.
  • Кроме металлов, индукционным нагревом возможен нагрев жидких проводов и газопроводов.
  • Для нагрева кремния в полупроводниковой промышленности используется принцип индукционного нагрева.
  • Этот процесс используется в индукционных печах для нагрева металла до точки его плавления.
  • Поскольку это бесконтактный процесс нагрева, вакуумные печи используют этот процесс для производства специальной стали и сплавов, которые могут окисляться при нагревании в присутствии кислорода.
  • Индукционный нагрев используется для сварки металлов, а иногда и пластмасс, когда они легированы ферромагнитной керамикой.
  • Индукционные плиты, используемые на кухне, работают по принципу индукционного нагрева.
  • Для пайки твердым припоем к валу используется процесс индукционного нагрева.
  • Для герметичного закрытия крышек бутылок и фармацевтических препаратов используется процесс индукционного нагрева.
  • Машина для моделирования впрыска пластмасс использует индукционный нагрев для повышения энергоэффективности впрыска.

Для обрабатывающей промышленности индукционный нагрев обеспечивает мощное сочетание стабильности, скорости и контроля.Это аккуратный, быстрый и экологически чистый процесс нагрева. Потери тепла, наблюдаемые при индукционном нагреве, могут быть решены с помощью закона Ленца. Этот закон показал способ продуктивного использования тепловых потерь, возникающих в процессе индукционного нагрева. Какое применение индукционного нагрева вас поразило?

Индукционный нагрев III. с IGBT

Индукционный нагрев III. с IGBT

Принцип индукционного нагрева прост.Катушка генерирует высокочастотное магнитное поле, а металлический предмет в середине катушка индуцирует вихревые токи, которые нагревают ее. Параллельно катушке подключается резонансная емкость для компенсации ее индуктивный характер. Резонансный контур (катушка-конденсатор) должен работать на его резонансной частоте. Ток возбуждения намного меньше чем ток, протекающий через катушку. Схема работает как «двойной полумост» с четырьмя IGBT STGW30NC60W, управляемыми с помощью схема IR2153.Двойной полумост способен выдавать ту же мощность, что и полный мост, но драйвер затвора проще. Большой двойной диод STTh300L06TV1 (2x 120A) работает как антипараллельные диоды. Будет достаточно диодов гораздо меньшего размера (30А). Если вы используете IGBT со встроенным диоды (например, STGW30NC60WD), вам не придется их использовать. Рабочая частота настраивается в резонанс с помощью потенциометра. Резонанс обозначается значком максимальная яркость светодиода. Конечно, вы можете создать более сложный драйвер. Лучше всего использовать автоматическую настройку, что, конечно, есть в профессиональных обогревателях, но схема потеряет привлекательную простоту.Частоту можно регулировать в диапазоне около От 110 до 210 кГц. Схема управления требует дополнительного напряжения 14-15В от небольшого переходника (может быть как коммутируемым, так и обычным). Выход подключен в рабочий контур через согласование дросселя L1 и разделительного трансформатора. Оба они находятся в воздушном исполнении. Дроссель имеет 4 витка на диаметре 23 см, разделительный трансформатор состоит из 12 витков двухжильного кабеля диаметром 14 см (см. фото ниже). Выходная мощность сейчас около 1600 Вт и все еще есть. есть возможности для улучшения.
Рабочая катушка изготовлена ​​из проволоки диаметром 3,3 мм. Лучше будет медная труба, которая может быть подключена к водяному охлаждению. Катушка имеет 6 витков диаметром 24 мм и высотой 23 мм. Катушка после продолжительной работы нагревается. Резонансный конденсатор выполнен из 23 шт. Малогабаритных конденсаторов общей емкостью 2u3. В конструкции можно использовать конденсаторы 100 нФ (полипропилен ~ 275В МКП и класс X2). Они не предназначены для таких целей, но могут быть использованы. Резонансная частота 160 кГц.Рекомендуется использовать фильтр EMI. Вариак можно заменить на мягкий пуск. Рекомендую использовать ограничитель тока, подключенный последовательно к сети (например, нагреватели, галогенные лампы, около 1 кВт) при первом включении.

Предупреждение! Цепь индукционного нагрева электрически подключена к сети и находится под опасным для жизни напряжением! Используйте потенциометр с пластмассовым стержнем. Высокочастотное электромагнитное поле может нанести вред электронным устройствам и носителям информации.Схема вызывает значительные электромагнитные помехи. Это может вызвать поражение электрическим током, ожоги или возгорание. Все делаете на свой страх и риск. Я не несу ответственности за любой причиненный вам вред.



Принципиальная схема индукционного нагревателя с IGBT


Резонансный контур индукционного нагрева


рабочий индукционный нагреватель


двойполомость 🙂


Двойной полумост


Двойной полумост и электролитический конденсатор


Elyte 2200u / 500V RIFA


Зеленый L1 и белый изолирующий трансформатор


деталь высокочастотного изоляционного трансформатора


Видео — Плавка стального шнека


Видео — Плавка стального шнека 2


Видео — обогрев разных предметов


дом

Схема простого индукционного нагревателя своими руками

Этот замечательный небольшой проект демонстрирует принципы высокочастотной магнитной индукции и способы изготовления индукционного нагревателя.Схема очень проста в сборке и использует только несколько общих компонентов. С показанной здесь индукционной катушкой схема потребляет около 5 А от источника питания 15 В, когда наконечник отвертки нагревается. Кончик отвертки нагревается докрасна примерно за 30 секунд!

Схема управления использует метод, известный как ZVS (переключение при нулевом напряжении), для активации транзисторов, что позволяет эффективно передавать мощность. В схеме, которую вы видите здесь, транзисторы почти не нагреваются из-за метода ZVS.Еще одна замечательная особенность этого устройства заключается в том, что это саморезонансная система, которая автоматически работает на резонансной частоте подключенной катушки и конденсатора. Если вы хотите сэкономить время, в нашем магазине есть индукционный нагреватель. Возможно, вы все равно захотите прочитать эту статью, чтобы получить несколько полезных советов по правильной работе вашей системы.

Как работает индукционный нагрев?

Когда магнитное поле изменяется около металла или другого проводящего объекта, в материале индуцируется ток (известный как вихревой ток), который генерирует тепло.Вырабатываемое тепло пропорционально квадрату тока, умноженному на сопротивление материала. Эффекты индукции используются в трансформаторах для преобразования напряжений во всех видах приборов. Большинство трансформаторов имеют металлический сердечник, поэтому при использовании в них наведены вихревые токи. Разработчики трансформаторов используют разные методы, чтобы предотвратить это, поскольку нагрев — это пустая трата энергии. В этом проекте мы будем напрямую использовать этот нагревательный эффект и постараемся максимизировать нагревательный эффект, создаваемый вихревыми токами.

Если мы приложим непрерывно изменяющийся ток к катушке с проволокой, у нас будет постоянно изменяющееся магнитное поле внутри нее. На более высоких частотах индукционный эффект довольно силен и имеет тенденцию концентрироваться на поверхности нагреваемого материала из-за скин-эффекта. Типичные индукционные нагреватели используют частоты от 10 кГц до 1 МГц.

ОПАСНО: Данное устройство может создавать очень высокие температуры!

Схема

Используемая схема представляет собой тип коллекторного резонансного генератора Ройера, который имеет преимущества простоты и саморезонансной работы.Очень похожая схема используется в обычных схемах инвертора, используемых для питания люминесцентного освещения, такого как подсветка ЖК-дисплея. Они приводят в действие трансформатор с центральным ответвлением, который повышает напряжение примерно до 800 В для питания фонарей. В этой схеме самодельного индукционного нагревателя трансформатор состоит из рабочей катушки и нагреваемого объекта.

Основным недостатком этой схемы является то, что требуется катушка с отводом по центру, которую может быть немного сложнее намотать, чем обычный соленоид. Катушка с отводом по центру необходима, чтобы мы могли создать поле переменного тока из одного источника постоянного тока и всего двух транзисторов N-типа.Центр катушки подключается к положительному источнику питания, а затем каждый конец катушки попеременно подключается к земле транзисторами, так что ток будет течь вперед и назад в обоих направлениях.

Сила тока, потребляемого от источника питания, зависит от температуры и размера нагреваемого объекта.

Из этой схемы индукционного нагревателя видно, насколько он на самом деле прост. Всего несколько основных компонентов — это все, что нужно для создания рабочего индукционного нагревателя.

R1 и R2 — стандартные резисторы 240 Ом, 0,6 Вт. Значение этих резисторов будет определять, насколько быстро МОП-транзисторы могут включиться, и должно быть достаточно низким. Однако они не должны быть слишком маленькими, так как резистор будет заземлен через диод при включении противоположного транзистора.

Диоды D1 и D2 используются для разряда затворов MOSFET. Это должны быть диоды с низким прямым падением напряжения, чтобы затвор был хорошо разряжен, а полевой МОП-транзистор полностью выключился, когда другой включен.Рекомендуются диоды Шоттки, такие как 1N5819, поскольку они имеют низкое падение напряжения и высокую скорость. Номинальное напряжение диодов должно быть достаточным, чтобы выдерживать повышение напряжения в резонансном контуре. В этом проекте напряжение выросло до 70 В.

Транзисторы T1 и T2 представляют собой полевые МОП-транзисторы на 100 В, 35 А (STP30NF10). Для этого проекта они были установлены на радиаторах, но при работе с указанными здесь уровнями мощности они почти не нагревались. Эти полевые МОП-транзисторы были выбраны из-за их низкого сопротивления сток-исток и малого времени отклика.

Катушка индуктивности L2 используется как дроссель для предотвращения попадания высокочастотных колебаний в источник питания и ограничения тока до приемлемого уровня. Значение индуктивности должно быть довольно большим (у нас было около 2 мГн), но оно также должно быть выполнено из достаточно толстого провода, чтобы пропускать весь ток питания. Если дроссель не используется или у него слишком малая индуктивность, цепь может перестать колебаться. Необходимое точное значение индуктивности будет зависеть от используемого блока питания и настройки катушки. Возможно, вам придется поэкспериментировать, прежде чем вы получите хороший результат.Показанный здесь был сделан путем наматывания примерно 8 витков магнитной проволоки толщиной 2 мм на тороидальный ферритовый сердечник. В качестве альтернативы вы можете просто намотать провод на большой болт, но вам понадобится гораздо больше витков провода, чтобы получить такую ​​же индуктивность, как у тороидального ферритового сердечника. Вы можете увидеть пример этого на фото слева. В нижнем левом углу вы можете увидеть болт, намотанный на множество витков провода оборудования. Эта установка на макетной плате использовалась при малой мощности для тестирования. Для большей мощности пришлось использовать более толстую проводку и все спаять вместе.

Поскольку компонентов было так мало, мы спаяли все соединения напрямую и не использовали печатную плату. Это также было полезно для выполнения соединений для сильноточных частей, поскольку толстый провод можно было напрямую припаять к клеммам транзистора. Оглядываясь назад, возможно, было бы лучше подключить индукционную катушку, прикрутив ее непосредственно к радиаторам на полевых МОП-транзисторах. Это связано с тем, что металлический корпус транзисторов также является выводом коллектора, а радиаторы могут помочь охладить катушку.

Конденсатор C1 и индуктор L1 образуют резонансный контур резервуара индукционного нагревателя. Они должны выдерживать большие токи и температуры. Мы использовали полипропиленовые конденсаторы емкостью 330 нФ. Более подробная информация об этих компонентах представлена ​​ниже.

Индукционная катушка и конденсатор

Катушка должна быть сделана из толстой проволоки или трубы, так как в ней будут протекать большие токи. Медная труба работает хорошо, так как токи высокой частоты в любом случае будут течь в основном по внешним частям.Вы также можете прокачать по трубе холодную воду, чтобы она оставалась прохладной.

Конденсатор должен быть подключен параллельно рабочей катушке, чтобы создать резонансный контур резервуара. Комбинация индуктивности и емкости будет иметь определенную резонансную частоту, на которой цепь управления будет работать автоматически. Используемая здесь комбинация катушка-конденсатор резонирует на частоте около 200 кГц.

Важно использовать конденсаторы хорошего качества, которые могут выдерживать большие токи и тепло, рассеиваемое в них, иначе они скоро выйдут из строя и разрушат вашу схему привода.Они также должны быть размещены достаточно близко к рабочей катушке и с использованием толстой проволоки или трубы. Большая часть тока будет протекать между катушкой и конденсатором, поэтому этот провод должен быть самым толстым. При желании провода, соединяющие цепь и источник питания, можно сделать немного тоньше.

Этот змеевик здесь был сделан из латунной трубы диаметром 2 мм. Его было просто наматывать и легко паять, но вскоре он начал деформироваться из-за чрезмерного нагрева. Затем повороты касаются друг друга, замыкаясь и делая его менее эффективным.Поскольку во время использования контур управления оставался относительно холодным, казалось, что его можно заставить работать на более высоких уровнях мощности, но необходимо будет использовать более толстую трубу или охлаждать ее водой. Затем установка была улучшена, чтобы выдерживать более высокий уровень мощности…

Продвигая дальше

Основным ограничением описанной выше схемы было то, что рабочая катушка через короткое время сильно нагрелась из-за больших токов. Для того, чтобы в течение длительного времени иметь большие токи, мы сделали еще одну катушку, используя более толстую латунную трубку, чтобы вода могла прокачиваться через нее во время работы.Более толстую трубу было труднее согнуть, особенно в центральной точке отвода. Перед сгибанием трубы необходимо было засыпать ее мелким песком, так как это предохраняет ее от защемления на крутых изгибах. Затем он был очищен сжатым воздухом.

Индукционная катушка была сделана из двух половин, как показано здесь. Затем они были спаяны вместе, и небольшой кусок трубы из ПВХ использовался для соединения центральных труб, чтобы вода могла течь через всю катушку.

В этой катушке было использовано меньше витков, чтобы она имела более низкий импеданс и, следовательно, выдерживала более высокие токи.Емкость также была увеличена, чтобы резонансная частота была ниже. Всего было использовано шесть конденсаторов по 330 нФ, что дало общую емкость 1,98 мкФ.

Кабели, соединяющиеся с катушкой, были просто припаяны к трубе около концов, оставляя место для установки какой-нибудь трубы из ПВХ.

Этот змеевик можно охладить, просто пропустив воду прямо из крана, но для отвода тепла лучше использовать насос и радиатор. Для этого в емкость с водой поместили старый насос для аквариума, а к выпускному патрубку вставили трубу.Эта труба поступала на модифицированный кулер компьютерного процессора, в котором для отвода тепла использовались три тепловые трубы.

Кулер был преобразован в радиатор путем отрезания концов тепловых трубок, а затем их соединения с трубами PCV, чтобы вода протекала через все 3 тепловые трубки, прежде чем выйти и вернуться к насосу.

Если вы сами разрезаете тепловые трубки, делайте это в хорошо проветриваемом помещении, а не в помещении, поскольку они содержат летучие растворители, которые могут быть токсичными для дыхания. Вы также должны носить защитные перчатки, чтобы предотвратить контакт с кожей.

Этот модифицированный кулер для процессора был очень эффективным в качестве радиатора и позволял воде оставаться довольно прохладной.

Другие необходимые модификации заключались в замене диодов D1 и D2 на диоды, рассчитанные на более высокое напряжение. Мы использовали обычные диоды 1N4007. Это было связано с тем, что с увеличением тока в резонансном контуре наблюдалось большее повышение напряжения. Вы можете видеть на изображении здесь, что пиковое напряжение составляло 90 В (желтый график осциллографа), что также очень близко к номинальному значению транзисторов 100 В.

Используемый блок питания был настроен на 30 В, поэтому также необходимо было подавать напряжение на затворы транзистора через стабилизатор напряжения 12 В. Когда внутри рабочей катушки не было металла, она потребляла около 7 А. Когда был добавлен болт на фотографии, он поднялся до 10 А, а затем постепенно снова упал, когда он нагрелся до температуры выше Кюри. Для более крупных объектов он, безусловно, превышает 10А, но используемый блок питания имеет ограничение в 10А. Вы можете найти подходящий блок питания на 24 В, 15 А в нашем интернет-магазине.

Болт, который вы видите на фотографии раскаленным докрасна, разогрелся примерно за 30 секунд.Отвертка на первом изображении теперь может нагреться докрасна примерно за 5 секунд.

Чтобы перейти на более высокую мощность, чем эта, необходимо использовать другие конденсаторы или их массив большего размера, чтобы ток распределялся между ними в большей степени. Это связано с тем, что протекающие большие токи и используемые высокие частоты могут значительно нагревать конденсаторы. Примерно через 5 минут использования на этом уровне мощности индукционный нагреватель DIY необходимо выключить, чтобы они могли остыть.Также необходимо использовать другую пару транзисторов, чтобы они могли выдерживать большие скачки напряжения.

Во всем этот проект оказался вполне удовлетворительным, так как дал хороший результат от простой и недорогой схемы. Как бы то ни было, он может быть полезен для закалки стали или для пайки мелких деталей. Если вы решили создать собственный проект индукционного нагревателя, разместите свои фотографии ниже. Пожалуйста, ознакомьтесь с другими комментариями, прежде чем делать свои собственные, поскольку это может сэкономить ваше время в дальнейшем.

Если вы хотите смоделировать этот проект для тестирования различных значений индуктивности или выбора транзисторов, загрузите LTSpice и запустите это моделирование самодельного индукционного нагревателя (щелкните правой кнопкой мыши, Сохранить как)

Насколько жарко станет?

Трудно сказать, насколько горячо вы сможете что-то получить, так как есть много параметров, которые необходимо учитывать. Различные материалы будут по-разному реагировать на индукционный нагрев, а их форма и размер будут влиять на то, как нагревание или отвод тепла в атмосферу.

Вы можете получить приблизительное представление, используя некоторые базовые вычисления по приведенной ниже формуле, или, если хотите, мы сделали удобный калькулятор мощности нагревателя, который может рассчитать это за вас. Эта форма включает в себя материалы (например, воду), которые нельзя нагревать напрямую с помощью индукционных нагревателей, но она по-прежнему полезна, если вы пытаетесь определить, например, мощность, необходимую для нагрева поддона с водой с помощью индукционного нагревателя.

ПРИМЕР: Насколько сильно нагреются 20 г стали за 30 секунд при нагревании с помощью нагревателя мощностью 300 Вт? (при условии, что 100 Вт потеряно для окружающей среды)

Формулы:
Q = m x Cp x ΔT
ΔT = Q ÷ m ÷ Cp

Рабочий:
(300Вт — 100Вт) x 30с = 6000Дж
6000Дж ÷ 20г ÷ 0.466Дж / г ° C = 643,78 ° C

Результат:
20 г стали температура увеличится на 643,78 ° C при нагревании нагревателем мощностью 300 Вт в течение 30 секунд.

Поиск и устранение неисправностей

Если у вас возникли проблемы с тем, чтобы это работало, вот несколько советов, которые помогут устранить неполадки в вашем домашнем проекте индукционного нагревателя….

PSU (источник питания)
Если ваш PSU не может подавать большой скачок тока при включении индукционного нагревателя, он не будет колебаться. В этот момент напряжение источника питания упадет (хотя блок питания может этого не отображать), и это помешает правильному переключению транзисторов.Чтобы решить эту проблему, вы можете разместить несколько больших электролитических конденсаторов параллельно источнику питания. Когда они заряжены, они могут подавать в вашу цепь большой импульсный ток. Хорошим мощным источником питания будет наш БП на 24 В 15 А постоянного тока.

Дроссель (индуктор L2)
Ограничивает мощность индукционного нагревателя. Если ваш не колеблется, вам может потребоваться дополнительная индуктивность, чтобы предотвратить падение напряжения в вашем блоке питания. Вам нужно будет поэкспериментировать с необходимой вам индуктивностью. Лучше иметь слишком много, чем слишком мало, так как это только ограничит мощность нагревателя.Слишком мало может означать, что это вообще не сработает. Если у вас слишком маленький сердечник индуктора, сильный ток приведет к его насыщению и вызовет слишком большой ток, что может привести к повреждению вашей цепи.

Электропроводка
Соединительные провода должны быть короткими, чтобы уменьшить паразитную индуктивность и помехи. Длинные провода добавляют в цепь нежелательное сопротивление и индуктивность, что может привести к нежелательным колебаниям или снижению производительности. Наш кабель питания на 30 А подходит для этого.

Компоненты
Выбранные транзисторы должны иметь низкое падение напряжения / сопротивление в открытом состоянии, в противном случае они перегреются или даже не позволят системе колебаться.Вероятно, IGBT не будут работать, но большинство полевых МОП-транзисторов с аналогичными характеристиками должны работать нормально. Конденсаторы должны иметь низкое ESR (сопротивление) и ESL (индуктивность), чтобы они могли выдерживать высокие токи и температуры. Диоды также должны иметь низкое прямое падение напряжения, чтобы транзисторы правильно отключались. Они также должны быть достаточно быстрыми, чтобы работать на резонансной частоте вашего индукционного нагревателя.

Включение питания
При включении не допускайте попадания металла в нагревательную спираль.Это может привести к более сильным скачкам тока, что может помешать возникновению колебаний, как упомянуто выше. Также не пытайтесь нагревать большое количество металла. Этот проект подходит только для небольших индукционных нагревателей. Если вы хотите контролировать или постепенно увеличивать мощность, вы можете использовать одну из наших схем импульсного модулятора мощности. Подробности смотрите в публикации 5108 ниже.

Мозг
Для безопасного выполнения этого проекта вам понадобится разумно работающий мозг. Создание индукционного нагревателя может быть очень опасным, поэтому, если вы новичок в электронике, вам следует попросить кого-нибудь помочь вам сделать это.Подходите к делу логически; Если он не работает, проверьте, что используемые компоненты не неисправны, проверьте правильность подключения, прочтите всю эту статью и все комментарии, выполните поиск в Google, если вы не понимаете какие-либо термины, или прочитайте наш раздел «Обучение электронике». Помните: горячее обожжет вас и может поджечь; Электричество может убить вас электрическим током, а также вызвать пожар. Безопасность превыше всего.

Змеевики индукционного нагрева — компоненты индукционного нагрева

Элементы индукционного нагрева

Типичная система индукционного нагревателя включает источник питания, цепь согласования импеданса, цепь резервуара и аппликатор.Аппликатор, представляющий собой индукционную катушку, может быть частью цепи резервуара. Цепь резервуара обычно представляет собой параллельный набор конденсаторов и катушек индуктивности. Конденсатор и индуктор в цепи резервуара являются резервуарами электростатической энергии и электромагнитной энергии соответственно. На резонансной частоте конденсатор и катушка индуктивности начинают передавать накопленную энергию друг другу. В параллельной конфигурации это преобразование энергии происходит при большом токе. Большой ток через катушку способствует хорошей передаче энергии от индукционной катушки к заготовке.

Щелкните здесь, чтобы узнать , что такое индукционные катушки и как они работают, а также различные типы катушек .

а) Источник питания

Источники питания — одна из важнейших частей системы индукционного нагревателя. Обычно они оцениваются по диапазону рабочих частот и мощности. Существуют различные типы индукционных источников питания, в том числе источники сетевой частоты, умножители частоты, двигатели-генераторы, преобразователи искрового разрядника и твердотельные инверторы.Твердотельные инверторы имеют наибольший КПД среди источников питания.

Типичный твердотельный инверторный источник питания состоит из двух основных частей; Выпрямитель и инвертор. Линейные переменные токи преобразуются в постоянный в выпрямительной секции с помощью диодов или тиристоров. Постоянный ток поступает в инвертор, где твердотельные переключатели, такие как IGBT или MOSFET, преобразуют его в ток, на этот раз с высокой частотой (обычно в диапазоне от 10 до 600 кГц). Согласно диаграмме ниже, IGBT могут работать на более высоком уровне мощности и более низкой частоте по сравнению с MOSFET, работающими на более низком уровне мощности и более высоких частотах.

b) Согласование импеданса

Источники питания для индукционного нагрева, как и любое другое электронное устройство, имеют максимальные значения напряжения и тока, которые нельзя превышать. Чтобы передать максимальную мощность от источника питания к нагрузке (заготовке), полное сопротивление источника питания и нагрузки должно быть как можно ближе. Таким образом, значения мощности, напряжения и тока могут одновременно достигать своих максимально допустимых пределов. Для этого в индукционных нагревателях используются схемы согласования импеданса.В зависимости от области применения могут использоваться различные комбинации электрических элементов (например, трансформаторы, регулируемые катушки индуктивности, конденсаторы и т. Д.).

c) Резонансный резервуар

Резонансный бак в системе индукционного нагрева обычно представляет собой параллельный набор конденсатора и индуктора, который резонирует на определенной частоте. Частота получается по следующей формуле:

где L — индуктивность индукционной катушки, а C — емкость.Согласно анимации ниже, явление резонанса очень похоже на то, что происходит в качающемся маятнике. В маятнике кинетическая и потенциальная энергии преобразуются друг в друга, пока он колеблется от одного конца к другому. Движение затухает из-за трения и других механических потерь. В резонансном резервуаре энергия, обеспечиваемая источником питания, колеблется между индуктором (в форме электромагнитной энергии) и конденсатором (в форме электростатической энергии). Энергия затухает из-за потерь в конденсаторе, катушке индуктивности и заготовке.Потери в заготовке в виде тепла желательны и предназначены для индукционного нагрева.

Сам резонансный бак состоит из конденсатора и индуктора. Блок конденсаторов используется для обеспечения необходимой емкости для достижения резонансной частоты, близкой к мощности источника питания. На низких частотах (ниже 10 кГц) используются масляные конденсаторы, а на более высоких частотах (более 10 кГц) используются керамические или твердые диэлектрические конденсаторы.

г) Индукторы индукционного нагревателя

Что такое индукционные катушки и как они работают?

Катушка индукционного нагрева представляет собой медную трубку особой формы или другой проводящий материал, через который пропускается переменный электрический ток, создавая переменное магнитное поле.Металлические части или другие проводящие материалы помещаются внутри, через катушку индукционного нагрева или рядом с ней, не касаясь катушки, и создаваемое переменное магнитное поле вызывает трение внутри металла, вызывая его нагрев.

Как работают индукционные катушки?

При проектировании катушки необходимо учитывать некоторые условия:

1. Для увеличения эффективности индукционных нагревателей расстояние между катушкой и заготовкой должно быть минимизировано.Эффективность связи между катушкой и заготовкой обратно пропорциональна квадратному корню из расстояния между ними.

2. Если деталь расположена в центре спиральной катушки, она будет лучше всего связана с магнитным полем. Если он смещен по центру, область заготовки, расположенная ближе к виткам, будет получать больше тепла. Этот эффект показан на рисунке ниже.

3. Кроме того, позиция рядом с соединением выводов и катушки имеет более слабую плотность магнитного потока, поэтому даже центр внутреннего диаметра спиральной катушки не является центром индукционного нагрева.

4. Следует избегать эффекта отмены (рисунок слева). Это происходит, когда раскрытие катушки очень мало. Добавление петли в катушку поможет обеспечить необходимую индуктивность (рисунок справа). Индуктивность индуктора определяет способность этого индуктора накапливать магнитную энергию. Индуктивность можно рассчитать по следующей формуле:

.

где ε — электродвижущая сила, а dI / dt — скорость изменения тока в катушке. Сам по себе ε равен скорости изменения магнитного потока в катушке (- dφ / dt), где магнитный поток φ может быть рассчитан из NBA, где N — количество витков, B — магнитное поле и A — площадь индуктор.Следовательно, индуктивность будет равна:

.

Очевидно, что величина индуктивности линейно пропорциональна площади индуктора. Следовательно, необходимо учитывать минимальное значение для контура индуктора, чтобы он мог накапливать магнитную энергию и передавать ее индукционной заготовке.

Эффективность катушки

КПД змеевика определяется следующим образом:

В таблице ниже показаны типичные значения КПД различных катушек:

Модификация катушки по заявке

В некоторых случаях нагревательный объект не имеет однородного профиля, но требует равномерного нагрева.В этих случаях необходимо изменить поле магнитного потока. Для этого есть два типичных метода. Один из способов — разделить витки там, где деталь имеет большее поперечное сечение (при использовании спиральной катушки). Более распространенный метод — увеличить расстояние между обмотками в тех областях, где поперечное сечение детали больше. Оба метода показаны на рисунке ниже.

Такая же ситуация бывает при нагреве плоских поверхностей большими змеевиками. Центральная зона получит излишнее тепло.Чтобы избежать этого, зазор между поверхностью катушки и плоским предметом будет увеличен за счет придания катушке блина конической формы.

Змеевик с лайнером используется в приложениях, где требуется широкая и однородная зона нагрева, но мы не хотим использовать большие медные трубки. Лайнер представляет собой широкий лист, который прихваткой припаян к гибкой трубе как минимум в двух точках. Остальная часть стыка будет припаяна только для обеспечения максимальной теплопередачи. Также синусоидальный профиль поможет увеличить охлаждающую способность змеевика.Такая катушка изображена на рисунке ниже.

По мере увеличения длины нагрева необходимо увеличивать количество витков, чтобы сохранить равномерность нагрева.

Схема нагрева меняется в зависимости от изменения формы заготовки. Магнитный поток имеет тенденцию накапливаться на краях, порезах или вмятинах на нагреваемом объекте, вызывая тем самым более высокую скорость нагрева в этих областях. На рисунке ниже показан «краевой эффект», когда змеевик находится выше края нагревательного элемента, и в этой области происходит чрезмерный нагрев.Чтобы этого не произошло, катушку можно опустить ниже, ровно или немного ниже края.

Индукционный нагрев дисков также может вызвать чрезмерный нагрев кромок, как показано на рисунке ниже. Края нагреваются сильнее. Высота катушки может быть уменьшена, или концы катушки могут быть сделаны с большим радиусом для отделения от края заготовки.

Острые углы прямоугольных катушек могут вызвать более глубокий нагрев детали.Разделение углов катушки, с одной стороны, снизит скорость нагрева угла, но, с другой стороны, снизит общую эффективность индукционного процесса.

Одним из важных моментов, которые следует учитывать при проектировании многопозиционных катушек, является влияние соседних катушек друг на друга. Чтобы обеспечить максимальную мощность нагрева каждой катушки, расстояние между центрами соседних катушек должно быть как минимум в 1,5 раза больше диаметра катушки.

Разделенные индукторы используются в приложениях, где требуется тесная связь, а также невозможно извлечь деталь из катушки после процесса нагрева.Важным моментом здесь является обеспечение очень хорошего электрического контакта в месте соединения шарнирных поверхностей. Обычно для обеспечения наилучшего электрического контакта с поверхностью используется тонкий слой серебра. Разделенные части змеевиков будут охлаждаться с помощью гибкого водяного шланга. Автоматическое пневматическое сжатие часто используется для закрытия / открытия змеевика, а также для обеспечения необходимого давления в шарнирной области.

Типы нагревательных змеевиков

Катушка для блинов с двойной деформацией

В таких применениях, как нагрев наконечника валов, достижение однородности температуры может быть затруднено из-за эффекта компенсации в центре поверхности наконечника.Двойной деформированный змеевик для блинов с обработанными сторонами, подобный схеме ниже, можно использовать для достижения равномерного профиля нагрева. Следует обратить внимание на направление двух блинов, в которых центральные обмотки намотаны в одном направлении и имеют дополнительный магнитный эффект.

Сплит-возвратная катушка

В таких применениях, как сварка узкой ленты на одной стороне длинного цилиндра, где относительно большая длина должна нагреваться значительно выше, чем другие области объекта, обратный ток будет иметь значение.Используя катушку типа Split-Return, большой ток, индуцируемый на пути сварки, будет разделен на две части, которые будут еще шире. Таким образом, скорость нагрева на сварочном пути как минимум в четыре раза выше, чем у остальных частей объекта.

Канальные катушки Катушки

канального типа используются, если время нагрева невелико, а также требуются довольно низкие удельные мощности. Несколько нагревательных частей проходят через змеевик с постоянной скоростью и достигают максимальной температуры при выходе из машины.Концы катушки обычно согнуты, чтобы обеспечить путь для входа и выхода деталей из катушки. Там, где требуется обогрев профиля, можно использовать пластинчатые концентраторы с многооборотными канальными змеевиками.

Квадратная медная трубка

имеет два основных преимущества по сравнению с круглой трубкой: а) поскольку она имеет более плоскую поверхность, «смотрящую» на заготовку, она обеспечивает лучшую электромагнитную связь с нагревательной нагрузкой и б) конструктивно легче выполнять повороты. с квадратными трубками, а не с круглыми.

Конструкция выводов для индукционных катушек

Конструкция выводов: выводы являются частью индукционной катушки, и хотя они очень короткие, они имеют конечную индуктивность. В общем, на приведенной ниже схеме показана принципиальная электрическая схема тепловой станции системы индукционных агрегатов. C — резонансный конденсатор, установленный в тепловой станции, L_lead — это общая индуктивность выводов катушки, а L_coil — индуктивность индукционной катушки, связанной с нагревательной нагрузкой. V_total — это напряжение, подаваемое от индукционного источника питания на тепловую станцию, V_lead — это падение напряжения на индуктивности вывода, а V_coil — это напряжение, которое будет приложено к индукционной катушке.Общее напряжение складывается из напряжения на выводах и индукционной катушке:

V_lead представляет собой величину общего напряжения, занятого выводами, и не оказывает никакого полезного индукционного воздействия. Задача дизайнера — минимизировать это значение. V_lead можно рассчитать как:

Из приведенных выше формул очевидно, что для минимизации значения V_lead индуктивность выводов должна быть в несколько раз меньше индуктивности индукционной катушки (L_lead≪L_coil).

Уменьшение индуктивности свинца: На низких частотах, обычно из-за использования катушек с высокой индуктивностью (многооборотные и / или с большим внутренним диаметром), L_lead намного меньше, чем L_coil. Однако, поскольку количество витков и общий размер катушки уменьшается для высокочастотных индукторов, становится важным применять специальные методы для минимизации индуктивности выводов. Ниже приведены два примера для этого.

Концентраторы потока: Когда магнитный материал помещается в окружающую среду, включая магнитные поля, из-за низкого магнитного сопротивления (сопротивления) они имеют тенденцию поглощать линии магнитного потока.Способность поглощать магнитное поле количественно оценивается относительной магнитной проницаемостью. Это значение для воздуха, меди и нержавеющей стали равно единице, но для мягкой стали может доходить до 400, а для железа — до 2000. Магнитные материалы могут сохранять свою магнитную способность до температуры Кюри, после чего их магнитная проницаемость падает до единицы и они больше не будут магнитными.

Концентратор потока — это материал с высокой проницаемостью и низкой электропроводностью, который предназначен для использования в конструкции катушек индукционного нагревателя для увеличения магнитного поля, приложенного к нагревающей нагрузке.На рисунке ниже показано, как размещение концентратора потока в центре блинной катушки будет концентрировать силовые линии магнитного поля на поверхности катушки. Таким образом, материалы, помещенные поверх змеевика для блинов, лучше соединятся и получат максимальный нагрев.

Влияние концентратора потока на плотность тока в индукционной катушке показано на рисунке ниже. Большая часть тока будет сосредоточена на поверхности, не покрытой концентратором флюса.Следовательно, змеевик может быть сконструирован таким образом, что только сторона змеевика, обращенная к нагревательной нагрузке, останется без материалов концентратора. В электромагнетизме это называется щелевым эффектом. Щелевой эффект значительно увеличит эффективность змеевика, и для нагрева потребуется более низкий уровень мощности.

Артикул:

  • С. Зинн и С. Л. Семятин, «Элементы индукционного нагрева, проектирования, управления и приложений», A S M International, ISBN-13: 9780871703088, 1988

Схема центрального отопления

(Боюсь, еще одна наспех скинутая страница…)

Люди часто спрашивают меня схемы центрального отопления, показывающие, как трубопроводы расположены в системе центрального отопления.

Существует почти бесконечное количество вариаций, но есть четыре основных типа;

Гравитация

Однотрубный

Полугравитация

Полностью накачанный

Первые два полностью устарели в бытовом отоплении и встречаются редко. Два других — обычное дело.

Недавние изменения в Строительных нормах и правилах сделали полугравитацию несовместимой, поэтому полностью откачанная конструкция является единственной компоновкой, подходящей в настоящее время для новых установок.Строительные нормы и правила теперь также регулируют замену котлов и фактически требуют преобразования полугравитационных систем в полностью насосные при каждой замене котла.

Со временем я добавлю сюда красивые аккуратные диаграммы каждого типа, но пока у меня есть только несколько диаграмм (показанных ниже), собранных из различных источников. Еще раз не законченная страница, но некоторая приблизительная информация лучше, чем ничего, надеюсь, вы согласитесь 😉

Полугравитация

Это компоновка системы, наиболее часто устанавливаемая с 1960-х по 1990-е годы.Котел нагревается, и вода циркулирует за счет естественной конвекции («гравитации») и нагревает водонагреватель. Чтобы это работало, HWC должен быть установлен выше, чем котел. Управление радиаторами осуществляется путем включения и выключения насоса, это делается автоматически с помощью комнатного термостата. Как вы понимаете, бойлер (и, следовательно, функция горячей воды) должен быть включен, прежде чем отопление заработает. Это учитывается типом программатора, установленного на полугравитационных системах — можно выбрать только горячую воду, но не только центральное отопление.Центральное отопление можно выбрать только тогда, когда выбрана горячая вода.

Оригинал этой диаграммы опубликован Honeywell на их странице с описанием того, как перейти от полугравитации к полностью откачанной, здесь http://content.honeywell.com/uk/homes/FAQ/@Semi-gravity%20conversion.pdf и это стоит прочитать. (Если кто-то из компании Honeywell возражает против того, чтобы я воспроизвел его здесь, свяжитесь со мной, и я удалю его.)

Полностью накачан

Здесь мощность котла поступает на пару клапанов с электроприводом (или один трехходовой клапан), и каждый клапан управляется термостатом.Когда комнатный термостат или термостат водонагревателя требует тепла, его эквивалентный клапан с электроприводом открывается и также включает котел. Преимущества этой системы заключаются в том, что котел остается выключенным и холодным, когда ни один из термостатов не требует тепла (что приводит к экономии топлива и сокращению выбросов CO2), и водонагреватель больше не нужно располагать над котлом. Их можно установить бок о бок, например, в одном шкафу или установить подвесной бойлер в бунгало со шкафом для вентиляции / накопителя горячей воды на том же уровне.

Компоновочная схема системы воспроизведена из руководства по установке Keston Celsius 25. (Если кто-нибудь из Кестона возражает против того, чтобы я воспроизвел его здесь, свяжитесь со мной, и я удалю его.)

Обратите внимание на отсутствие насоса на этой схеме. Это потому, что этот конкретный котел имеет встроенный насос в подающей трубе. Для большинства котлов требуется установка отдельного насоса снаружи непосредственно перед клапанами с электроприводом. Два клапана в потоке к цилиндру и радиаторам на этой схеме будут моторизованными клапанами, управляемыми термостатами цилиндра и помещения.

Полугравитационный с термостатическим контролем зоны

Я украл эту диаграмму из инструкций по установке Honeywell «Sundial C Plan». План C — это метод установки термостатического управления как в зоне горячего водоснабжения, так и в зоне нагрева помещения в полугравитационной системе. Необычный. Основным преимуществом этого является то, что, как и в полностью насосной системе, котел отключается, когда оба термостата удовлетворены, что обеспечивает повышенную экономию топлива. (Обратите внимание, что питающий и расширительный бак и соединения трубопроводов не показаны на схеме.)

Важно использовать 28-миллиметровую версию двухходового клапана с электроприводом V4043, потому что, в отличие от 22-миллиметровой версии, она имеет двухходовой переключатель, который срабатывает при открытии клапана, а не простой переключатель включения / выключения 22-мм клапана. Двусторонний переключатель важен для метода подключения, который заставляет эту систему работать. Для получения полной информации о конструкции C Plan и подключении вы можете загрузить инструкцию по установке в формате PDF с веб-сайта Honeywell UK здесь. Вам нужно будет зарегистрироваться.

Комбинированная система

На этой схеме показано, насколько проста система отопления, подключенная к комбинированному котлу.Ни внешнего насоса, ни баков, ни внешнего расширительного бака, ни моторизованных клапанов, и во многих случаях пункт 6 также не требуется. (Автоматический байпасный клапан в настоящее время встроен в большинство комбинированных котлов производителями.) Неудивительно, что ленивые инженеры-теплотехники предпочитают отопительную систему комбинированного котла надлежащему бойлеру и водонагревателю.

Гравитация

Это мой собственный грубый набросок традиционной гравитационной системы. Это то же самое, что и старая угольная система, но с газовым котлом, вставленным вместо оригинального угольного котла на кухне.Там нет насоса (очевидно), и все это установлено с использованием труб огромного диаметра, потому что единственной движущей силой для циркуляции является естественная конвекция. Горячая вода менее плотная, чем холодная, поэтому она поднимается до верха системы. Вода внутри радиаторов охлаждается, поскольку она отдает тепло для обогрева дома и падает на дно системы, где повторно нагревается котлом и снова поднимается наверх. Старые немодифицированные гравитационные системы обычно являются прямыми, что означает, что вода из кранов и водонагревателя — это та же вода, которая циркулирует через радиаторы.Внутри HWC нет отдельного напорного бака и нагревательного змеевика, как в современных системах.

Однотрубная система

Это схема устаревшей однотрубной насосной системы. Есть несколько подобных систем, которые еще используются, но, как правило, они приближаются к 50-летнему возрасту или устанавливаются самим установщиком с очень старой книгой о том, как установить центральное отопление.

Первоначально устанавливались однотрубные системы и добавлялись к угольным кострам с задними котлами. Вокруг дома была установлена ​​петля из трубы, и насос закачивал горячую воду по петле.Некоторая часть горячей воды попала в радиаторы естественной конвекцией или по счастливой случайности и сделала радиаторы теплыми (но никогда не ГОРЯЧИМИ). Когда газовые котлы начали устанавливать в обычных жилых домах, формат был скопирован, но быстро вытеснен «двухтрубным» методом, поскольку все радиаторы нагревались должным образом. Как вы можете видеть из диаграммы, охлажденная вода из каждого радиатора разбавляет горячую воду в контуре трубы, поэтому последний рад в системе не имеет надежды на то, чтобы нагреться должным образом. Я знаю это, потому что в моей спальне в доме, где я вырос, был последний рад…

С технической точки зрения любой наблюдательный человек заметит, что насос на этой схеме установлен в обратном направлении, поэтому качает не в том направлении. Его надо качать справа налево, обратно в котел!

Принципиальная схема

, принцип и его применение

Все мы знаем, что развитие технологий улучшается день ото дня за счет изобретения различных тенденций и творческих способностей. Таким же образом улучшаются подходы к приготовлению пищи и использованию огня. Мы полностью знаем, как готовить, литье металлов, процедуры, применяемые в различных отраслях промышленности, и многое другое.Но величайшая революция, которая произошла, заключалась в том, чтобы работать над тем же без использования огня. Инновации и усовершенствованные технологии продемонстрировали различные подходы к применению метода обогрева без огня. Одним из величайших нововведений стал «Диэлектрический нагрев». Итак, вы можете подумать, как работает этот диэлектрический процесс и многие другие. Давайте перейдем к обсуждению этого.

Что такое диэлектрический нагрев?

Определение: Диэлектрический нагрев также называют радиочастотным, емкостным или электрическим нагревом.Это можно описать как процесс, при котором температура непроводящего электричества вещества может быть увеличена, если позволить веществу увеличить частоту электромагнитного поля. Это позволяет развивать диэлектрические потери в веществе, что проявляется в виде диэлектрического нагрева. Частоты, которые находятся в диапазоне 10-100 МГц, необходимы для измерения объема диэлектрического нагрева. Хотя расширенные диапазоны частот работают лучше, в некоторых материалах, в основном в жидкостях, минимальный диапазон частот оказывает существенное влияние на нагрев, что может быть связано с типичными методиками.

Например, в некоторых типах проводящих жидкостей, таких как соленая вода, эффект ионного увлечения вызывает нагрев из-за медленного движения заряженных ионов в жидкости под действием электрического заряда, а также жидких частиц в процессе и передача кинетической энергии этим частицам, которая в конечном итоге передается в виде молекулярных колебаний и так называемая тепловая энергия.

диэлектрический нагрев

Кроме того, процесс диэлектрического нагрева также рассматривается как объемный, что позволяет эффективно повышать температуру, что означает быстрое увеличение скорости нагрева за счет существенного устранения температурного градиента.Кроме того, существуют соответствующие различия между микроволнами и радиочастотными волнами. Повышенная эффективность передачи энергии для целей микроволнового нагрева, проникновение прекращается, когда полная энергия СВЧ преобразуется в тепло в слое ткани. Это может вызвать неравномерный нагрев внутри мышечной ткани. С другой стороны, РЧ, поддерживаемое в средних диапазонах частот, имеет более широкое проникновение, чем СВЧ.

Схема цепи нагрева диэлектрика

Приведенная ниже принципиальная схема четко объясняет работу нагревателя диэлектрика .Система включает две металлические пластины, также называемые электродами, на которые прикладывается электрическое поле. Вещество, которое необходимо нагреть, помещается между этими двумя электродами.

Схема замещения диэлектрика

Векторная диаграмма, соответствующая приведенной выше схеме:

Векторная диаграмма

Существует два подхода, в которых вещество может быть нагрето с помощью методологии нагрева.

  • Один из них нагревает вещество низкочастотными волнами, как метод ближнего поля.
  • Другой нагревает вещество посредством высокочастотных волн за счет приближения электромагнитных волн.

Также подходы не только в методологии отопления, но и в видах материалов, которые используются для отопления.

Поскольку системы с минимальной частотой имеют расширенный диапазон длин волн, они могут легче проникать через непроводящие вещества, чем электромагнитные волны. Расстояние между поглотителем и излучателем должно составлять минимум 1/2 длины волны для веществ, которые используют минимальные частотные диапазоны.Таким образом, подход к нагреву материала в минимальных частотных диапазонах подобен приконтактному методу.

Системы с повышенной частотой имеют минимальный диапазон длин волн. Здесь расстояние между электродами больше приложенной длины волны. Между электродами возникают обычные электромагнитные волны дальнего поля.

Диэлектрическое уравнение может быть получено следующим образом:

Величина тока, протекающего через конденсатор, равна

IC = Напряжение / XC = В / (1 / 2∏fC) = 2∏fC (Напряжение) Амперы

Где C рассчитывается в фарадах, а напряжение — в вольтах.Ток, потребляемый от источника питания, равен

I = IC = 2∏fC (Напряжение) Амперы

И количество произведенной мощности составляет

P = (Напряжение) (Ток) cosФ

Напряжение = 2∏fC (Напряжение) × cosФ Вт

= 2∏fC (Напряжение) 2 Вт

Емкость конденсатора измеряется как:

C = E r E 0 A / t фарад

Где ‘Er’ соответствует диэлектрической проницаемости

‘E 0′ соответствует абсолютной диэлектрической проницаемости вакуума, и значение равно 8.854 × 10 -12 Ф / м.

‘t’ — толщина диэлектрического материала, а

‘A’ — полная площадь поверхности электродов, измеренная в м 2

Принцип диэлектрического нагрева

Необходимо расположить вещество, которое подвергается нагреву между электродами, где применяется широкий диапазон частот. Чтобы обеспечить соответствующие потери и достаточный нагрев, применяется диапазон частот от 10 до 20 МГц, а напряжение изменяется в диапазоне от 10 до 20 кВ.Напряжение питания необходимого диапазона частот поступает от устройства, называемого вентильным генератором. Величина тока, потребляемого конденсатором в то время, когда между электродами подается переменное напряжение, не будет направлять напряжение питания точно на 90 0 , где это означает, что существует определенный элемент тока, который находится в точной фазе. с переменным напряжением. Поскольку из-за этого элемента в диэлектрическом материале, который находится между электродами, выделяется тепло.

Кроме того, электрическая энергия, которая рассеивается в виде тепловой энергии в диэлектрическом веществе, называется диэлектрическими потерями.Эти потери линейно пропорциональны умножению частоты на квадрат напряжения (V 2 f). Благодаря этому в диэлектрическом нагреве используется расширенный диапазон высокочастотных напряжений.

Итак, обычно используется напряжение переменного тока около 20 кВ в диапазоне частот от 10 до 30 МГц. Таким образом, согласно анализу, диэлектрический нагрев дает результат около 50%.

Преимущества и недостатки

Обсудим преимущества и недостатки диэлектрического нагрева.

Преимущества
  • Поскольку тепло генерируется по всему материалу, на выходе получается равномерный нагрев. При использовании традиционных процедур на выходе не будет равномерного нагрева, и это одно из главных преимуществ диэлектрического нагрева.
  • Вся процедура требует минимального времени для завершения по сравнению с другими методами.
  • Кроме того, диэлектрический нагрев подходит для непроводящих материалов, таких как пластик, синтетические элементы, дерево и многие другие.
Недостатки
  • Нагревание возможно только для веществ с высоким уровнем диэлектрических потерь.
  • Оборудование, необходимое для всего процесса, является дорогостоящим, и этот метод применяется только тогда, когда другие подходы невозможны.
  • Общая эффективность диэлектрического нагрева слишком мала и составляет почти 50%.
  • Использование высокочастотных диапазонов может вызвать радиопомехи.

Применения

Некоторые из применений диэлектрического нагрева включают следующие:

Предварительный нагрев пластиковых улучшений

Сырые вещества, которые находятся в форме лекарственных таблеток или печенья, обычно называемых пластиковыми преформами, необходимо заранее нагреваются линейно, когда они перемещаются в формы, и вся масса превращается в жидкость, или же, когда сырье хранится непосредственно в формах, которые обычно нагреваются паром, внешняя поверхность преформ нагревается и инициирует отверждение, тогда как Материал сердцевины не нагрелся до температуры жидкости, что приводит к недостаточному затвердеванию пластмассы и неправильному заполнению углов в формах.

И осложнения возникают из-за того, что пластиковое сырье после обработки не превратится в мягкое. Любая технология нагрева, основанная на передаче температуры от поверхностного слоя к сердцевине, будет ужасно неудачной из-за того, что пластик является одним из плохих проводников тепла. Таким образом, поскольку диэлектрический нагрев является единственным подходом, который может быть реализован, предварительный нагрев пластиковых преформ до соответствующей температуры в равной степени.

Склеивание деревянных досок

Самым важным методом склеивания деревянных досок является диэлектрический нагрев.Здесь, в технике склеивания древесины, влажное содержимое деревянных досок остается неизменным. Это связано с тем, что тепло может быть реализовано на любой из предпочтительных поверхностей. Основная сложность при использовании клея животного происхождения — увеличенное время отверждения, а также каждая часть должна храниться вместе и выдерживаться под точным механическим давлением, а затем после нанесения клея в течение одного дня. Для склеивания древесины можно применять механическое давление посредством диэлектрического нагрева, чтобы обеспечить надежную защиту и хорошие адгезионные свойства.

Обжиг литейных стержней

В литейных цехах используются термореактивные насадки из смолы, так как они легко затвердевают при достижении температур, близких к температурам полимеризации. Благодаря диэлектрическому нагреву вода может быть легко удалена из смеси сердцевины, а также повышена температура сердцевины до точки полимеризации. Таким образом, диэлектрический нагрев подходит для обжига литейных стержней, ассимилированных с термореактивной смолой связующих стержней.

Стерилизация

Этот метод полностью подходит для стерилизации стерильных инструментов, калибров, бинтов и впитывающей ваты.

Текстиль

Здесь используется подход для сушки.

Диатермия

Также применяется в процессах нагрева костей и тканей тела, необходимых для лечения некоторых заболеваний и недомоганий.

Электронное шитье

При сшивании некоторых материалов, таких как зонтики и плащи, ниткой через несколько дней стежки могут ослабнуть, и они также могут оказаться водонепроницаемыми. В таких случаях лучше всего работает отверждение клея.При электронном шитье пленки, которые должны быть сшиты, помещаются между холодными валками, и здесь будет приложение частотного напряжения. Таким образом, тепло, которое выделяется в материале, сжимает поверхность, а холодные ролики обеспечивают прочное сцепление с внешними поверхностями.

Другие применения диэлектрического нагрева:

  • Реализуется при пастеризации молока и пива в пакетах или бутылках.
  • Обезвоживание фруктов, яиц и овощей
  • Применяется в процессе приготовления пищи без обрезания внешних поверхностей.
  • Бактерицидный нагрев — При диэлектрическом нагревании продукты не теряют свой аромат.
  • Используется в процессе размораживания овощей и мяса.

FAQ’s

Каков принцип диэлектрического нагрева?

Диэлектрический нагрев работает по принципу диэлектрических потерь. Изменяющееся электрическое поле генерирует энергию, которая должна рассеиваться, и молекулы движутся в соответствии с изменяющимся электрическим движением.

1). Что подразумевается под диэлектрическими потерями?

Потери, которые используются для нагрева диэлектрического материала в изменяющемся электрическом поле.

2). Радиоволны производят тепло?

Радиоволны обладают способностью легко перемещаться на поверхность и позволяют своей энергии накапливаться в материалах и биологических сетях.

3). Насколько эффективно электрическое тепло?

Электрическое тепло является полностью эффективным, когда полученная электрическая энергия полностью преобразуется в тепло.

4). Что такое частотный нагрев?

Методики нагрева, которые реализованы в нормальных частотных диапазонах (50 Гц), называются нагревом промышленной частоты.

Итак, это все о диэлектрическом нагреве. Обширные преимущества и возможности применения позволяют реализовать эту процедуру во многих приложениях. Многие домены в наши дни переходят на диэлектрический нагрев. Итак, мы хотели бы представить, каково основное и понятное применение диэлектрического нагрева и почему?

Схемы подключения термостата [Установка проводов] Простое руководство

Провод термостата и электрическое питание

Схемы подключения термостата Кондиционеры

Провод, который вы используете для подключения термостата, должен быть 18-го калибра.Кроме того, провод должен быть в жгуте и иметь разные цвета для цветового кода. Кроме того, если у вас нет милливольтной системы или электрического обогрева плинтуса (обычно газовые бревна), ваша система будет иметь низкое напряжение. Это низкое напряжение колеблется от 23 до 30 вольт. Это пониженное напряжение возникает из-за линейного напряжения через трансформатор, обычно расположенный в вашем кондиционере.

Кроме того, важно найти выключатели для ваших систем отопления и охлаждения и отключить питание перед подключением проводов.И да, может быть более одного обрыва, обеспечивающего подачу напряжения на ваш блок HVAC. Системы отопления и кондиционирования воздуха обычно являются отдельными системами и имеют собственные выключатели. Что немаловажно, это особенно актуально, если у вас есть кондиционер с гидронной (котельной) системой. Помните, перед подключением отключите питание. Комбинации включают:

  • 2-проводная система — обычно это домашняя система отопления
  • 3-проводная система — также возможна только система отопления
  • 4-проводная система — иногда при переходе со старого механического термостата вы найдете четыре проводные системы.4-проводные системы термостатов не типичны для цифровых или программируемых термостатов.
  • 5-проводные системы — обычно это системы кондиционирования и отопления с общим проводом для питания термостата.
  • 6 или более проводов, как правило, представляют собой тепловые насосы. Тепловые насосы используют дополнительные средства управления кондиционером, такие как реверсивный клапан и электрические нагревательные полосы. Всегда следуйте предложенному цвету для вашей конкретной марки оборудования HVAC.

Интеллектуальные и программируемые термостаты

Схемы подключения термостатов Honeywell

Ваша система отопления и охлаждения, если современная система, вероятно, имеет домашний термостат, который является цифровым термостатом по сравнению с более старыми механическими термостатами.Кроме того, установка термостата для новых энергоэффективных термостатов обеспечит лучшее энергосбережение. Кроме того, улучшается домашний комфорт и снижаются затраты на электроэнергию. Как домовладелец, чтобы без проблем установить новый термостат, просто следуйте инструкциям. Наконец, некоторые из лучших термостатов включают:

  • Ecobee — у меня лично есть этот в моем доме, и он мне очень нравится.
  • Honeywell Lyric
  • Emerson Sensi
  • Nest Learning Thermostat
  • И несколько других брендов
Заключение

Многие из этих термостатов имеют сенсорный экран.Кроме того, ими также можно управлять с помощью приложения через ваш смартфон или через Интернет с ноутбука или настольного компьютера. Это предлагает управление из удаленного места. Если вы вышли на работу и забыли изменить температуру термостата, просто войдите в систему и измените ее или выключите. Они сокращают потребление энергии, тем самым уменьшая ваши счета за электроэнергию. Кроме того, эти термостаты требуют подключения к Wi-Fi для удаленной работы.

Более того, эта домашняя технология сделала большой шаг вперед в сокращении потребления энергии в доме.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *